混合交通路口交通信号灯控制和互联自动驾驶车辆协调的分布式优化

Viet-Anh Le, Andreas A. Malikopoulos
{"title":"混合交通路口交通信号灯控制和互联自动驾驶车辆协调的分布式优化","authors":"Viet-Anh Le, Andreas A. Malikopoulos","doi":"arxiv-2409.10864","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of coordinating traffic light systems\nand connected automated vehicles (CAVs) in mixed-traffic intersections. We aim\nto develop an optimization-based control framework that leverages both the\ncoordination capabilities of CAVs at higher penetration rates and intelligent\ntraffic management using traffic lights at lower penetration rates. Since the\nresulting optimization problem is a multi-agent mixed-integer quadratic\nprogram, we propose a penalization-enhanced maximum block improvement algorithm\nto solve the problem in a distributed manner. The proposed algorithm, under\ncertain mild conditions, yields a feasible and person-by-person optimal\nsolution of the centralized problem. The performance of the control framework\nand the distributed algorithm is validated through simulations across various\npenetration rates and traffic volumes.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Optimization for Traffic Light Control and Connected Automated Vehicle Coordination in Mixed-Traffic Intersections\",\"authors\":\"Viet-Anh Le, Andreas A. Malikopoulos\",\"doi\":\"arxiv-2409.10864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of coordinating traffic light systems\\nand connected automated vehicles (CAVs) in mixed-traffic intersections. We aim\\nto develop an optimization-based control framework that leverages both the\\ncoordination capabilities of CAVs at higher penetration rates and intelligent\\ntraffic management using traffic lights at lower penetration rates. Since the\\nresulting optimization problem is a multi-agent mixed-integer quadratic\\nprogram, we propose a penalization-enhanced maximum block improvement algorithm\\nto solve the problem in a distributed manner. The proposed algorithm, under\\ncertain mild conditions, yields a feasible and person-by-person optimal\\nsolution of the centralized problem. The performance of the control framework\\nand the distributed algorithm is validated through simulations across various\\npenetration rates and traffic volumes.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了在混合交通路口协调交通灯系统和联网自动驾驶车辆(CAV)的问题。我们的目标是开发一种基于优化的控制框架,既能在较高渗透率下利用 CAV 的协调能力,又能在较低渗透率下利用交通灯进行智能交通管理。由于由此产生的优化问题是一个多代理混合整数二次方程式程序,我们提出了一种惩罚增强型最大区块改进算法,以分布式方式解决该问题。在某些温和的条件下,所提出的算法可以得到集中式问题的可行且逐人的最优解。通过对不同渗透率和流量的仿真,验证了控制框架和分布式算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Optimization for Traffic Light Control and Connected Automated Vehicle Coordination in Mixed-Traffic Intersections
In this paper, we consider the problem of coordinating traffic light systems and connected automated vehicles (CAVs) in mixed-traffic intersections. We aim to develop an optimization-based control framework that leverages both the coordination capabilities of CAVs at higher penetration rates and intelligent traffic management using traffic lights at lower penetration rates. Since the resulting optimization problem is a multi-agent mixed-integer quadratic program, we propose a penalization-enhanced maximum block improvement algorithm to solve the problem in a distributed manner. The proposed algorithm, under certain mild conditions, yields a feasible and person-by-person optimal solution of the centralized problem. The performance of the control framework and the distributed algorithm is validated through simulations across various penetration rates and traffic volumes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1