网络游戏中数据驱动的动态干预设计

Xiupeng Chen, Nima Monshizadeh
{"title":"网络游戏中数据驱动的动态干预设计","authors":"Xiupeng Chen, Nima Monshizadeh","doi":"arxiv-2409.11069","DOIUrl":null,"url":null,"abstract":"Targeted interventions in games present a challenging problem due to the\nasymmetric information available to the regulator and the agents. This note\naddresses the problem of steering the actions of self-interested agents in\nquadratic network games towards a target action profile. A common starting\npoint in the literature assumes prior knowledge of utility functions and/or\nnetwork parameters. The goal of the results presented here is to remove this\nassumption and address scenarios where such a priori knowledge is unavailable.\nTo this end, we design a data-driven dynamic intervention mechanism that relies\nsolely on historical observations of agent actions and interventions.\nAdditionally, we modify this mechanism to limit the amount of interventions,\nthereby considering budget constraints. Analytical convergence guarantees are\nprovided for both mechanisms, and a numerical case study further demonstrates\ntheir effectiveness.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Dynamic Intervention Design in Network Games\",\"authors\":\"Xiupeng Chen, Nima Monshizadeh\",\"doi\":\"arxiv-2409.11069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeted interventions in games present a challenging problem due to the\\nasymmetric information available to the regulator and the agents. This note\\naddresses the problem of steering the actions of self-interested agents in\\nquadratic network games towards a target action profile. A common starting\\npoint in the literature assumes prior knowledge of utility functions and/or\\nnetwork parameters. The goal of the results presented here is to remove this\\nassumption and address scenarios where such a priori knowledge is unavailable.\\nTo this end, we design a data-driven dynamic intervention mechanism that relies\\nsolely on historical observations of agent actions and interventions.\\nAdditionally, we modify this mechanism to limit the amount of interventions,\\nthereby considering budget constraints. Analytical convergence guarantees are\\nprovided for both mechanisms, and a numerical case study further demonstrates\\ntheir effectiveness.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于监管者和代理的信息不对称,在博弈中进行有针对性的干预是一个具有挑战性的问题。本论文探讨了如何在二次网络博弈中引导自利代理的行动向目标行动轮廓靠拢的问题。文献中一个常见的出发点是假设事先知道效用函数和/或网络参数。为此,我们设计了一种数据驱动的动态干预机制,该机制完全依赖于对代理行动和干预的历史观察。此外,我们还修改了该机制,以限制干预的数量,从而考虑到预算约束。我们为这两种机制提供了分析收敛保证,并通过数值案例研究进一步证明了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven Dynamic Intervention Design in Network Games
Targeted interventions in games present a challenging problem due to the asymmetric information available to the regulator and the agents. This note addresses the problem of steering the actions of self-interested agents in quadratic network games towards a target action profile. A common starting point in the literature assumes prior knowledge of utility functions and/or network parameters. The goal of the results presented here is to remove this assumption and address scenarios where such a priori knowledge is unavailable. To this end, we design a data-driven dynamic intervention mechanism that relies solely on historical observations of agent actions and interventions. Additionally, we modify this mechanism to limit the amount of interventions, thereby considering budget constraints. Analytical convergence guarantees are provided for both mechanisms, and a numerical case study further demonstrates their effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1