通过传感器融合和误差状态扩展卡尔曼滤波器估算立方体卫星的姿态

Deep Parikh, Manoranjan Majji
{"title":"通过传感器融合和误差状态扩展卡尔曼滤波器估算立方体卫星的姿态","authors":"Deep Parikh, Manoranjan Majji","doi":"arxiv-2409.10815","DOIUrl":null,"url":null,"abstract":"A pose estimation technique based on error-state extended Kalman that fuses\nangular rates, accelerations, and relative range measurements is presented in\nthis paper. An unconstrained dynamic model with kinematic coupling for a\nthrust-capable satellite is considered for the state propagation, and a\npragmatic measurement model of the rate gyroscope, accelerometer, and an\nultra-wideband radio are leveraged for the measurement update. The error-state\nextended Kalman filter framework is formulated for pose estimation, and its\nperformance has been analyzed via several simulation scenarios. An application\nof the pose estimator for proximity operations and scaffolding formation of\nCubeSat deputies relative to their mother-ship is outlined. Finally, the\nperformance of the error-state extended Kalman filter is demonstrated using\nexperimental analysis consisting of a 3-DOF thrust cable satellite mock-up,\nrate gyroscope, accelerometer, and ultra-wideband radar modules.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pose estimation of CubeSats via sensor fusion and Error-State Extended Kalman Filter\",\"authors\":\"Deep Parikh, Manoranjan Majji\",\"doi\":\"arxiv-2409.10815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pose estimation technique based on error-state extended Kalman that fuses\\nangular rates, accelerations, and relative range measurements is presented in\\nthis paper. An unconstrained dynamic model with kinematic coupling for a\\nthrust-capable satellite is considered for the state propagation, and a\\npragmatic measurement model of the rate gyroscope, accelerometer, and an\\nultra-wideband radio are leveraged for the measurement update. The error-state\\nextended Kalman filter framework is formulated for pose estimation, and its\\nperformance has been analyzed via several simulation scenarios. An application\\nof the pose estimator for proximity operations and scaffolding formation of\\nCubeSat deputies relative to their mother-ship is outlined. Finally, the\\nperformance of the error-state extended Kalman filter is demonstrated using\\nexperimental analysis consisting of a 3-DOF thrust cable satellite mock-up,\\nrate gyroscope, accelerometer, and ultra-wideband radar modules.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于误差状态扩展卡尔曼的姿态估计技术,该技术融合了角速率、加速度和相对距离测量。在状态传播方面,考虑了具有推力能力的卫星的无约束动态模型与运动耦合,在测量更新方面,利用了速率陀螺仪、加速度计和超宽带无线电的实用测量模型。为姿态估计制定了误差状态扩展卡尔曼滤波框架,并通过几个模拟场景对其性能进行了分析。概述了姿态估计器在立方体卫星副手相对于母船的接近操作和脚手架形成中的应用。最后,利用由 3-DOF 推力电缆卫星模型、速率陀螺仪、加速度计和超宽带雷达模块组成的实验分析,展示了误差状态扩展卡尔曼滤波器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pose estimation of CubeSats via sensor fusion and Error-State Extended Kalman Filter
A pose estimation technique based on error-state extended Kalman that fuses angular rates, accelerations, and relative range measurements is presented in this paper. An unconstrained dynamic model with kinematic coupling for a thrust-capable satellite is considered for the state propagation, and a pragmatic measurement model of the rate gyroscope, accelerometer, and an ultra-wideband radio are leveraged for the measurement update. The error-state extended Kalman filter framework is formulated for pose estimation, and its performance has been analyzed via several simulation scenarios. An application of the pose estimator for proximity operations and scaffolding formation of CubeSat deputies relative to their mother-ship is outlined. Finally, the performance of the error-state extended Kalman filter is demonstrated using experimental analysis consisting of a 3-DOF thrust cable satellite mock-up, rate gyroscope, accelerometer, and ultra-wideband radar modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1