小规模大贡献:利用 cmsy 和 lbb 方法评估巴基斯坦北阿拉伯海印度鲭鱼 (Rastrelliger anagurta)渔业的种群状况

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-16 DOI:10.1007/s11852-024-01068-9
Muhsan Ali Kalhoro, Lixin Zhu, Jeong Ha Kim, Xiaoyong Liu, Chunli Liu, Zhenlin Liang
{"title":"小规模大贡献:利用 cmsy 和 lbb 方法评估巴基斯坦北阿拉伯海印度鲭鱼 (Rastrelliger anagurta)渔业的种群状况","authors":"Muhsan Ali Kalhoro, Lixin Zhu, Jeong Ha Kim, Xiaoyong Liu, Chunli Liu, Zhenlin Liang","doi":"10.1007/s11852-024-01068-9","DOIUrl":null,"url":null,"abstract":"<p>Overfishing remains a global concern, however effective management from well valuation of fisheries may efficiently reduce the impact of fishing. Therefore, it is important to evaluate the biomass of Indian Mackerel fishery in order to maintain the stock. Catch-based Monte Carlo maximum sustainable yield (CMSY) method and Length-based Bayesian Biomass (LBB) methods are frequently used to evaluate fish stock. Eighteen years effort-catch and length frequency data from commercial fishing were utilize to estimate the current biomass. The calculated biological reference points from Bayesian state-space Schaefer production model (BSM) at <i>r</i> = 0.618, k = 68,700, maximum sustainable yield (MSY) = 10,600. However, CMSY at <i>r</i> = 0.662, k = 6800, MSY = 11,200. Biomass in 2021 at maximum sustainable yield 2021 (B<sub>2021</sub>/B<sub>MSY</sub>) = 0.436 (&lt; 1) and fishing rate F<sub>2021</sub>/F<sub>MSY</sub> = 1.94 (&gt; 1) values explain the Indian Mackerel fishery is at exploited state. However, results using LBB model defines as B/B<sub>MSY</sub> = 0.65 (&lt; 1.0) and fishing rate F/F<sub>MSY</sub> = 3.33 (&gt; 1.0) and mean length/optimum length (<b><i>L</i></b><sub><b><i>mean</i></b></sub><b><i>/ L</i></b><sub><b><i>opt</i></b></sub>) obtained at 1.3 and <b><i>L</i></b><sub><b><i>95th</i></b></sub><b><i>/ L</i></b><sub><b><i>inf</i></b></sub> at 0.95. Based on suggested prior biomass range (B/B<sub>MSY</sub> =0.5–0.8) for stock assessment also indicates that the Indian Mackerel fishery is in unsustainable state from the study area. Monitoring of illicit fishing practices in the area is recommended. Measures need to be implemented for the protection of these valuable resources.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small in scale big in contribution: evaluating the stock status of indian mackerel (Rastrelliger anagurta) fishery using cmsy and lbb approaches from pakistan, northern arabian sea\",\"authors\":\"Muhsan Ali Kalhoro, Lixin Zhu, Jeong Ha Kim, Xiaoyong Liu, Chunli Liu, Zhenlin Liang\",\"doi\":\"10.1007/s11852-024-01068-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Overfishing remains a global concern, however effective management from well valuation of fisheries may efficiently reduce the impact of fishing. Therefore, it is important to evaluate the biomass of Indian Mackerel fishery in order to maintain the stock. Catch-based Monte Carlo maximum sustainable yield (CMSY) method and Length-based Bayesian Biomass (LBB) methods are frequently used to evaluate fish stock. Eighteen years effort-catch and length frequency data from commercial fishing were utilize to estimate the current biomass. The calculated biological reference points from Bayesian state-space Schaefer production model (BSM) at <i>r</i> = 0.618, k = 68,700, maximum sustainable yield (MSY) = 10,600. However, CMSY at <i>r</i> = 0.662, k = 6800, MSY = 11,200. Biomass in 2021 at maximum sustainable yield 2021 (B<sub>2021</sub>/B<sub>MSY</sub>) = 0.436 (&lt; 1) and fishing rate F<sub>2021</sub>/F<sub>MSY</sub> = 1.94 (&gt; 1) values explain the Indian Mackerel fishery is at exploited state. However, results using LBB model defines as B/B<sub>MSY</sub> = 0.65 (&lt; 1.0) and fishing rate F/F<sub>MSY</sub> = 3.33 (&gt; 1.0) and mean length/optimum length (<b><i>L</i></b><sub><b><i>mean</i></b></sub><b><i>/ L</i></b><sub><b><i>opt</i></b></sub>) obtained at 1.3 and <b><i>L</i></b><sub><b><i>95th</i></b></sub><b><i>/ L</i></b><sub><b><i>inf</i></b></sub> at 0.95. Based on suggested prior biomass range (B/B<sub>MSY</sub> =0.5–0.8) for stock assessment also indicates that the Indian Mackerel fishery is in unsustainable state from the study area. Monitoring of illicit fishing practices in the area is recommended. Measures need to be implemented for the protection of these valuable resources.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11852-024-01068-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11852-024-01068-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过度捕捞仍然是全球关注的问题,然而,通过对渔业进行充分评估进行有效管理可以有效减少捕捞的影响。因此,评估印度鲭鱼渔业的生物量对维持鱼类种群非常重要。基于渔获量的蒙特卡罗最大持续产量(CMSY)方法和基于长度的贝叶斯生物量(LBB)方法经常被用于评估鱼类种群。利用商业捕捞的 18 年努力捕获量和长度频率数据来估算当前的生物量。贝叶斯状态空间谢弗产量模型(BSM)计算出的生物参考点为 r = 0.618、k = 68,700 和最大持续产量(MSY)= 10,600。然而,CMSY 的 r = 0.662,k = 6800,MSY = 11200。2021年最大持续产量(B2021/BMSY)=0.436(< 1)和捕捞率F2021/FMSY=1.94(> 1)的2021年生物量值说明印度鲭鱼渔业处于开发状态。然而,使用LBB模型的结果定义为B/BMSY = 0.65 (< 1.0)和捕捞率F/FMSY = 3.33 (> 1.0),平均长度/最佳长度(Lmean/ Lopt)为1.3,L95th/ Linf为0.95。根据建议的先期生物量范围(B/BMSY =0.5-0.8)进行种群评估,也表明印度鲭鱼渔业在研究区域处于不可持续状态。建议对该地区的非法捕鱼行为进行监测。需要采取措施保护这些宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small in scale big in contribution: evaluating the stock status of indian mackerel (Rastrelliger anagurta) fishery using cmsy and lbb approaches from pakistan, northern arabian sea

Overfishing remains a global concern, however effective management from well valuation of fisheries may efficiently reduce the impact of fishing. Therefore, it is important to evaluate the biomass of Indian Mackerel fishery in order to maintain the stock. Catch-based Monte Carlo maximum sustainable yield (CMSY) method and Length-based Bayesian Biomass (LBB) methods are frequently used to evaluate fish stock. Eighteen years effort-catch and length frequency data from commercial fishing were utilize to estimate the current biomass. The calculated biological reference points from Bayesian state-space Schaefer production model (BSM) at r = 0.618, k = 68,700, maximum sustainable yield (MSY) = 10,600. However, CMSY at r = 0.662, k = 6800, MSY = 11,200. Biomass in 2021 at maximum sustainable yield 2021 (B2021/BMSY) = 0.436 (< 1) and fishing rate F2021/FMSY = 1.94 (> 1) values explain the Indian Mackerel fishery is at exploited state. However, results using LBB model defines as B/BMSY = 0.65 (< 1.0) and fishing rate F/FMSY = 3.33 (> 1.0) and mean length/optimum length (Lmean/ Lopt) obtained at 1.3 and L95th/ Linf at 0.95. Based on suggested prior biomass range (B/BMSY =0.5–0.8) for stock assessment also indicates that the Indian Mackerel fishery is in unsustainable state from the study area. Monitoring of illicit fishing practices in the area is recommended. Measures need to be implemented for the protection of these valuable resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1