{"title":"利用位点频率比隔离选择性和非选择性作用力","authors":"Jody Hey, Vitor Pavinato","doi":"10.1101/2024.09.13.612810","DOIUrl":null,"url":null,"abstract":"A new method is introduced for estimating the distribution of mutation fitness effects using site frequency spectra. Unlike previous methods, which make assumptions about non-selective factors, or that try to incorporate such factors into the underlying model, this new method mostly avoids non-selective effects by working with the ratios of counts of selected sites to neutral sites. An expression for the likelihood of a set of selected/neutral ratios is found by treating the ratio of two Poisson random variables as the ratio of two gaussian random variables. This approach also avoids the need to estimate the relative mutation rates of selected and neutral sites. Simulations over a wide range of demographic models, with linked selection effects show that the new SF-Ratios method performs well for statistical tests of selection, and it performs well for estimating the distribution of selection effects. Applications to two populations of Drosophila melanogaster reveal clear but very weak selection on synonymous sites. For nonsynonymous sites, selection was estimated to be far weaker than previous estimates for Drosophila populations.","PeriodicalId":501183,"journal":{"name":"bioRxiv - Evolutionary Biology","volume":"195 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolating selective from non-selective forces using site frequency ratios\",\"authors\":\"Jody Hey, Vitor Pavinato\",\"doi\":\"10.1101/2024.09.13.612810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method is introduced for estimating the distribution of mutation fitness effects using site frequency spectra. Unlike previous methods, which make assumptions about non-selective factors, or that try to incorporate such factors into the underlying model, this new method mostly avoids non-selective effects by working with the ratios of counts of selected sites to neutral sites. An expression for the likelihood of a set of selected/neutral ratios is found by treating the ratio of two Poisson random variables as the ratio of two gaussian random variables. This approach also avoids the need to estimate the relative mutation rates of selected and neutral sites. Simulations over a wide range of demographic models, with linked selection effects show that the new SF-Ratios method performs well for statistical tests of selection, and it performs well for estimating the distribution of selection effects. Applications to two populations of Drosophila melanogaster reveal clear but very weak selection on synonymous sites. For nonsynonymous sites, selection was estimated to be far weaker than previous estimates for Drosophila populations.\",\"PeriodicalId\":501183,\"journal\":{\"name\":\"bioRxiv - Evolutionary Biology\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Evolutionary Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.13.612810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Evolutionary Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.13.612810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Isolating selective from non-selective forces using site frequency ratios
A new method is introduced for estimating the distribution of mutation fitness effects using site frequency spectra. Unlike previous methods, which make assumptions about non-selective factors, or that try to incorporate such factors into the underlying model, this new method mostly avoids non-selective effects by working with the ratios of counts of selected sites to neutral sites. An expression for the likelihood of a set of selected/neutral ratios is found by treating the ratio of two Poisson random variables as the ratio of two gaussian random variables. This approach also avoids the need to estimate the relative mutation rates of selected and neutral sites. Simulations over a wide range of demographic models, with linked selection effects show that the new SF-Ratios method performs well for statistical tests of selection, and it performs well for estimating the distribution of selection effects. Applications to two populations of Drosophila melanogaster reveal clear but very weak selection on synonymous sites. For nonsynonymous sites, selection was estimated to be far weaker than previous estimates for Drosophila populations.