通过多源遥感加强泥炭地监测:光学和雷达数据应用

IF 3 3区 地球科学 Q2 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY International Journal of Remote Sensing Pub Date : 2024-08-30 DOI:10.1080/01431161.2024.2387133
Gohar Ghazaryan, Lena Krupp, Simon Seyfried, Nele Landgraf, Claas Nendel
{"title":"通过多源遥感加强泥炭地监测:光学和雷达数据应用","authors":"Gohar Ghazaryan, Lena Krupp, Simon Seyfried, Nele Landgraf, Claas Nendel","doi":"10.1080/01431161.2024.2387133","DOIUrl":null,"url":null,"abstract":"Peatlands play a pivotal role in global carbon cycling and the conservation of biodiversity even though they cover a small fraction of the Earth’s terrestrial surface. These ecosystems are, however...","PeriodicalId":14369,"journal":{"name":"International Journal of Remote Sensing","volume":"30 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing peatland monitoring through multisource remote sensing: optical and radar data applications\",\"authors\":\"Gohar Ghazaryan, Lena Krupp, Simon Seyfried, Nele Landgraf, Claas Nendel\",\"doi\":\"10.1080/01431161.2024.2387133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peatlands play a pivotal role in global carbon cycling and the conservation of biodiversity even though they cover a small fraction of the Earth’s terrestrial surface. These ecosystems are, however...\",\"PeriodicalId\":14369,\"journal\":{\"name\":\"International Journal of Remote Sensing\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01431161.2024.2387133\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01431161.2024.2387133","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

泥炭地虽然只占地球陆地表面的一小部分,却在全球碳循环和生物多样性保护方面发挥着举足轻重的作用。然而,这些生态系统...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing peatland monitoring through multisource remote sensing: optical and radar data applications
Peatlands play a pivotal role in global carbon cycling and the conservation of biodiversity even though they cover a small fraction of the Earth’s terrestrial surface. These ecosystems are, however...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Remote Sensing
International Journal of Remote Sensing 工程技术-成像科学与照相技术
CiteScore
7.00
自引率
5.90%
发文量
219
审稿时长
4.8 months
期刊介绍: The International Journal of Remote Sensing ( IJRS) is concerned with the theory, science and technology of remote sensing and novel applications of remotely sensed data. The journal’s focus includes remote sensing of the atmosphere, biosphere, cryosphere and the terrestrial earth, as well as human modifications to the earth system. Principal topics include: • Remotely sensed data collection, analysis, interpretation and display. • Surveying from space, air, water and ground platforms. • Imaging and related sensors. • Image processing. • Use of remotely sensed data. • Economic surveys and cost-benefit analyses. • Drones Section: Remote sensing with unmanned aerial systems (UASs, also known as unmanned aerial vehicles (UAVs), or drones).
期刊最新文献
Optimizing predictions of environmental variables and species distributions on tidal flats by combining Sentinel-2 images and their deep-learning features with OBIA. Assessment of yield loss due to fall armyworm in maize using high-resolution multispectral spaceborne remote sensing Structural graph learning method for hyperspectral band selection Dynamic region growing approach for leaf-wood separation of individual trees based on geometric features and growing patterns Feature extraction via 3-D homogeneous attribute decomposition for hyperspectral imagery classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1