Sang-Won Han, Young Ho Park, Paula J Bice, David A. Bennett, SangYun Kim, Andrew J. Saykin, Kwangsik Nho
{"title":"miR-133b 是阿尔茨海默病突触 NPTX2 蛋白的潜在调节因子","authors":"Sang-Won Han, Young Ho Park, Paula J Bice, David A. Bennett, SangYun Kim, Andrew J. Saykin, Kwangsik Nho","doi":"10.1002/acn3.52175","DOIUrl":null,"url":null,"abstract":"<p>A synaptic protein, Neuronal Pentraxin 2 (NPTX2), has emerged as a pivotal biomarker for Alzheimer's dementia (AD). We identified candidate miRNAs targeting NPTX2 and performed association and mediation analyses using multi-omics data (N = 702). Among 44 candidate miRNAs, miR-133b was significantly associated with AD and Braak positivity. Higher miR-133b expression was also associated with higher <i>NPTX2</i> gene expression and better cognition. Mediation analysis showed that miR-133b partially influences AD and cognition through the NPTX2 protein. Our integrated approach suggests a potential role of miR-133b in synaptic integrity and offers new insights into AD pathogenesis.</p>","PeriodicalId":126,"journal":{"name":"Annals of Clinical and Translational Neurology","volume":"11 10","pages":"2799-2804"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acn3.52175","citationCount":"0","resultStr":"{\"title\":\"miR-133b as a potential regulator of a synaptic NPTX2 protein in Alzheimer's disease\",\"authors\":\"Sang-Won Han, Young Ho Park, Paula J Bice, David A. Bennett, SangYun Kim, Andrew J. Saykin, Kwangsik Nho\",\"doi\":\"10.1002/acn3.52175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A synaptic protein, Neuronal Pentraxin 2 (NPTX2), has emerged as a pivotal biomarker for Alzheimer's dementia (AD). We identified candidate miRNAs targeting NPTX2 and performed association and mediation analyses using multi-omics data (N = 702). Among 44 candidate miRNAs, miR-133b was significantly associated with AD and Braak positivity. Higher miR-133b expression was also associated with higher <i>NPTX2</i> gene expression and better cognition. Mediation analysis showed that miR-133b partially influences AD and cognition through the NPTX2 protein. Our integrated approach suggests a potential role of miR-133b in synaptic integrity and offers new insights into AD pathogenesis.</p>\",\"PeriodicalId\":126,\"journal\":{\"name\":\"Annals of Clinical and Translational Neurology\",\"volume\":\"11 10\",\"pages\":\"2799-2804\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acn3.52175\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical and Translational Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acn3.52175\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical and Translational Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acn3.52175","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
miR-133b as a potential regulator of a synaptic NPTX2 protein in Alzheimer's disease
A synaptic protein, Neuronal Pentraxin 2 (NPTX2), has emerged as a pivotal biomarker for Alzheimer's dementia (AD). We identified candidate miRNAs targeting NPTX2 and performed association and mediation analyses using multi-omics data (N = 702). Among 44 candidate miRNAs, miR-133b was significantly associated with AD and Braak positivity. Higher miR-133b expression was also associated with higher NPTX2 gene expression and better cognition. Mediation analysis showed that miR-133b partially influences AD and cognition through the NPTX2 protein. Our integrated approach suggests a potential role of miR-133b in synaptic integrity and offers new insights into AD pathogenesis.
期刊介绍:
Annals of Clinical and Translational Neurology is a peer-reviewed journal for rapid dissemination of high-quality research related to all areas of neurology. The journal publishes original research and scholarly reviews focused on the mechanisms and treatments of diseases of the nervous system; high-impact topics in neurologic education; and other topics of interest to the clinical neuroscience community.