探索基于因果单元(IPU)的端到端智能语音识别系统方法

Anusha Prakash, Hema A Murthy
{"title":"探索基于因果单元(IPU)的端到端智能语音识别系统方法","authors":"Anusha Prakash, Hema A Murthy","doi":"arxiv-2409.11915","DOIUrl":null,"url":null,"abstract":"Sentences in Indian languages are generally longer than those in English.\nIndian languages are also considered to be phrase-based, wherein semantically\ncomplete phrases are concatenated to make up sentences. Long utterances lead to\npoor training of text-to-speech models and result in poor prosody during\nsynthesis. In this work, we explore an inter-pausal unit (IPU) based approach\nin the end-to-end (E2E) framework, focusing on synthesising\nconversational-style text. We consider both autoregressive Tacotron2 and\nnon-autoregressive FastSpeech2 architectures in our study and perform\nexperiments with three Indian languages, namely, Hindi, Tamil and Telugu. With\nthe IPU-based Tacotron2 approach, we see a reduction in insertion and deletion\nerrors in the synthesised audio, providing an alternative approach to the\nFastSpeech(2) network in terms of error reduction. The IPU-based approach\nrequires less computational resources and produces prosodically richer\nsynthesis compared to conventional sentence-based systems.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems\",\"authors\":\"Anusha Prakash, Hema A Murthy\",\"doi\":\"arxiv-2409.11915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentences in Indian languages are generally longer than those in English.\\nIndian languages are also considered to be phrase-based, wherein semantically\\ncomplete phrases are concatenated to make up sentences. Long utterances lead to\\npoor training of text-to-speech models and result in poor prosody during\\nsynthesis. In this work, we explore an inter-pausal unit (IPU) based approach\\nin the end-to-end (E2E) framework, focusing on synthesising\\nconversational-style text. We consider both autoregressive Tacotron2 and\\nnon-autoregressive FastSpeech2 architectures in our study and perform\\nexperiments with three Indian languages, namely, Hindi, Tamil and Telugu. With\\nthe IPU-based Tacotron2 approach, we see a reduction in insertion and deletion\\nerrors in the synthesised audio, providing an alternative approach to the\\nFastSpeech(2) network in terms of error reduction. The IPU-based approach\\nrequires less computational resources and produces prosodically richer\\nsynthesis compared to conventional sentence-based systems.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度语言的句子通常比英语的句子长。印度语言也被认为是以短语为基础的语言,语义完整的短语被连接起来构成句子。长语句导致文本到语音模型的训练时间过长,并造成合成时的前音不佳。在这项工作中,我们在端到端(E2E)框架内探索了一种基于停顿间单元(IPU)的方法,重点是合成对话式文本。我们在研究中考虑了自回归 Tacotron2 和非自回归 FastSpeech2 架构,并对三种印度语言(印地语、泰米尔语和泰卢固语)进行了实验。通过基于 IPU 的 Tacotron2 方法,我们发现合成音频中的插入和删除错误有所减少,在减少错误方面为 FastSpeech(2) 网络提供了一种替代方法。与传统的基于句子的系统相比,基于 IPU 的方法所需的计算资源更少,合成的前音也更丰富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems
Sentences in Indian languages are generally longer than those in English. Indian languages are also considered to be phrase-based, wherein semantically complete phrases are concatenated to make up sentences. Long utterances lead to poor training of text-to-speech models and result in poor prosody during synthesis. In this work, we explore an inter-pausal unit (IPU) based approach in the end-to-end (E2E) framework, focusing on synthesising conversational-style text. We consider both autoregressive Tacotron2 and non-autoregressive FastSpeech2 architectures in our study and perform experiments with three Indian languages, namely, Hindi, Tamil and Telugu. With the IPU-based Tacotron2 approach, we see a reduction in insertion and deletion errors in the synthesised audio, providing an alternative approach to the FastSpeech(2) network in terms of error reduction. The IPU-based approach requires less computational resources and produces prosodically richer synthesis compared to conventional sentence-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1