用高斯过程进行基于 Manifold 的声源定位的共形预测

Vadim Rozenfeld, Bracha Laufer Goldshtein
{"title":"用高斯过程进行基于 Manifold 的声源定位的共形预测","authors":"Vadim Rozenfeld, Bracha Laufer Goldshtein","doi":"arxiv-2409.11804","DOIUrl":null,"url":null,"abstract":"We tackle the challenge of uncertainty quantification in the localization of\na sound source within adverse acoustic environments. Estimating the position of\nthe source is influenced by various factors such as noise and reverberation,\nleading to significant uncertainty. Quantifying this uncertainty is essential,\nparticularly when localization outcomes impact critical decision-making\nprocesses, such as in robot audition, where the accuracy of location estimates\ndirectly influences subsequent actions. Despite this, many localization methods\ntypically offer point estimates without quantifying the estimation uncertainty.\nTo address this, we employ conformal prediction (CP)-a framework that delivers\nstatistically valid prediction intervals with finite-sample guarantees,\nindependent of the data distribution. However, commonly used Inductive CP (ICP)\nmethods require a substantial amount of labeled data, which can be difficult to\nobtain in the localization setting. To mitigate this limitation, we incorporate\na manifold-based localization method using Gaussian process regression (GPR),\nwith an efficient Transductive CP (TCP) technique specifically designed for\nGPR. We demonstrate that our method generates statistically valid uncertainty\nintervals across different acoustic conditions.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal Prediction for Manifold-based Source Localization with Gaussian Processes\",\"authors\":\"Vadim Rozenfeld, Bracha Laufer Goldshtein\",\"doi\":\"arxiv-2409.11804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We tackle the challenge of uncertainty quantification in the localization of\\na sound source within adverse acoustic environments. Estimating the position of\\nthe source is influenced by various factors such as noise and reverberation,\\nleading to significant uncertainty. Quantifying this uncertainty is essential,\\nparticularly when localization outcomes impact critical decision-making\\nprocesses, such as in robot audition, where the accuracy of location estimates\\ndirectly influences subsequent actions. Despite this, many localization methods\\ntypically offer point estimates without quantifying the estimation uncertainty.\\nTo address this, we employ conformal prediction (CP)-a framework that delivers\\nstatistically valid prediction intervals with finite-sample guarantees,\\nindependent of the data distribution. However, commonly used Inductive CP (ICP)\\nmethods require a substantial amount of labeled data, which can be difficult to\\nobtain in the localization setting. To mitigate this limitation, we incorporate\\na manifold-based localization method using Gaussian process regression (GPR),\\nwith an efficient Transductive CP (TCP) technique specifically designed for\\nGPR. We demonstrate that our method generates statistically valid uncertainty\\nintervals across different acoustic conditions.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决在不利声学环境中声源定位的不确定性量化难题。声源位置的估计会受到噪声和混响等各种因素的影响,从而导致显著的不确定性。量化这种不确定性至关重要,尤其是当定位结果影响关键决策过程时,例如在机器人听觉中,位置估计的准确性会直接影响后续行动。为了解决这个问题,我们采用了保形预测 (CP)--一种提供统计上有效的预测区间并具有有限样本保证的框架,与数据分布无关。然而,常用的归纳预测(ICP)方法需要大量标注数据,这在本地化环境中很难获得。为了缓解这一限制,我们使用高斯过程回归(GPR)将基于流形的定位方法与专为高斯过程回归设计的高效归纳 CP(TCP)技术结合起来。我们证明,我们的方法能在不同的声学条件下产生统计上有效的不确定性区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conformal Prediction for Manifold-based Source Localization with Gaussian Processes
We tackle the challenge of uncertainty quantification in the localization of a sound source within adverse acoustic environments. Estimating the position of the source is influenced by various factors such as noise and reverberation, leading to significant uncertainty. Quantifying this uncertainty is essential, particularly when localization outcomes impact critical decision-making processes, such as in robot audition, where the accuracy of location estimates directly influences subsequent actions. Despite this, many localization methods typically offer point estimates without quantifying the estimation uncertainty. To address this, we employ conformal prediction (CP)-a framework that delivers statistically valid prediction intervals with finite-sample guarantees, independent of the data distribution. However, commonly used Inductive CP (ICP) methods require a substantial amount of labeled data, which can be difficult to obtain in the localization setting. To mitigate this limitation, we incorporate a manifold-based localization method using Gaussian process regression (GPR), with an efficient Transductive CP (TCP) technique specifically designed for GPR. We demonstrate that our method generates statistically valid uncertainty intervals across different acoustic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1