低帧率语音编解码器:专为快速高质量语音 LLM 训练和推理而设计的编解码器

Edresson Casanova, Ryan Langman, Paarth Neekhara, Shehzeen Hussain, Jason Li, Subhankar Ghosh, Ante Jukić, Sang-gil Lee
{"title":"低帧率语音编解码器:专为快速高质量语音 LLM 训练和推理而设计的编解码器","authors":"Edresson Casanova, Ryan Langman, Paarth Neekhara, Shehzeen Hussain, Jason Li, Subhankar Ghosh, Ante Jukić, Sang-gil Lee","doi":"arxiv-2409.12117","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have significantly advanced audio processing\nthrough audio codecs that convert audio into discrete tokens, enabling the\napplication of language modeling techniques to audio data. However, audio\ncodecs often operate at high frame rates, resulting in slow training and\ninference, especially for autoregressive models. To address this challenge, we\npresent the Low Frame-rate Speech Codec (LFSC): a neural audio codec that\nleverages finite scalar quantization and adversarial training with large speech\nlanguage models to achieve high-quality audio compression with a 1.89 kbps\nbitrate and 21.5 frames per second. We demonstrate that our novel codec can\nmake the inference of LLM-based text-to-speech models around three times faster\nwhile improving intelligibility and producing quality comparable to previous\nmodels.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference\",\"authors\":\"Edresson Casanova, Ryan Langman, Paarth Neekhara, Shehzeen Hussain, Jason Li, Subhankar Ghosh, Ante Jukić, Sang-gil Lee\",\"doi\":\"arxiv-2409.12117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) have significantly advanced audio processing\\nthrough audio codecs that convert audio into discrete tokens, enabling the\\napplication of language modeling techniques to audio data. However, audio\\ncodecs often operate at high frame rates, resulting in slow training and\\ninference, especially for autoregressive models. To address this challenge, we\\npresent the Low Frame-rate Speech Codec (LFSC): a neural audio codec that\\nleverages finite scalar quantization and adversarial training with large speech\\nlanguage models to achieve high-quality audio compression with a 1.89 kbps\\nbitrate and 21.5 frames per second. We demonstrate that our novel codec can\\nmake the inference of LLM-based text-to-speech models around three times faster\\nwhile improving intelligibility and producing quality comparable to previous\\nmodels.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大语言模型(LLM)通过音频编解码器将音频转换为离散的词块,大大推进了音频处理,从而使语言建模技术能够应用于音频数据。然而,音频编解码器通常以高帧率运行,导致训练和推理速度缓慢,尤其是自回归模型。为了应对这一挑战,我们提出了低帧率语音编解码器(LFSC):一种神经音频编解码器,它利用有限标量量化和对抗训练以及大型语音语言模型,以 1.89 kbps 的比特率和每秒 21.5 帧的速度实现高质量音频压缩。我们证明,我们的新型编解码器可将基于 LLM 的文本到语音模型的推理速度提高约三倍,同时提高可懂度,并产生与以前的模型相当的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modeling techniques to audio data. However, audio codecs often operate at high frame rates, resulting in slow training and inference, especially for autoregressive models. To address this challenge, we present the Low Frame-rate Speech Codec (LFSC): a neural audio codec that leverages finite scalar quantization and adversarial training with large speech language models to achieve high-quality audio compression with a 1.89 kbps bitrate and 21.5 frames per second. We demonstrate that our novel codec can make the inference of LLM-based text-to-speech models around three times faster while improving intelligibility and producing quality comparable to previous models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1