利用教师启发的混淆类教学进行数据高效的声学场景分类

Jin Jie Sean Yeo, Ee-Leng Tan, Jisheng Bai, Santi Peksi, Woon-Seng Gan
{"title":"利用教师启发的混淆类教学进行数据高效的声学场景分类","authors":"Jin Jie Sean Yeo, Ee-Leng Tan, Jisheng Bai, Santi Peksi, Woon-Seng Gan","doi":"arxiv-2409.11964","DOIUrl":null,"url":null,"abstract":"In this technical report, we describe the SNTL-NTU team's submission for Task\n1 Data-Efficient Low-Complexity Acoustic Scene Classification of the detection\nand classification of acoustic scenes and events (DCASE) 2024 challenge. Three\nsystems are introduced to tackle training splits of different sizes. For small\ntraining splits, we explored reducing the complexity of the provided baseline\nmodel by reducing the number of base channels. We introduce data augmentation\nin the form of mixup to increase the diversity of training samples. For the\nlarger training splits, we use FocusNet to provide confusing class information\nto an ensemble of multiple Patchout faSt Spectrogram Transformer (PaSST) models\nand baseline models trained on the original sampling rate of 44.1 kHz. We use\nKnowledge Distillation to distill the ensemble model to the baseline student\nmodel. Training the systems on the TAU Urban Acoustic Scene 2022 Mobile\ndevelopment dataset yielded the highest average testing accuracy of (62.21,\n59.82, 56.81, 53.03, 47.97)% on split (100, 50, 25, 10, 5)% respectively over\nthe three systems.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Efficient Acoustic Scene Classification using Teacher-Informed Confusing Class Instruction\",\"authors\":\"Jin Jie Sean Yeo, Ee-Leng Tan, Jisheng Bai, Santi Peksi, Woon-Seng Gan\",\"doi\":\"arxiv-2409.11964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this technical report, we describe the SNTL-NTU team's submission for Task\\n1 Data-Efficient Low-Complexity Acoustic Scene Classification of the detection\\nand classification of acoustic scenes and events (DCASE) 2024 challenge. Three\\nsystems are introduced to tackle training splits of different sizes. For small\\ntraining splits, we explored reducing the complexity of the provided baseline\\nmodel by reducing the number of base channels. We introduce data augmentation\\nin the form of mixup to increase the diversity of training samples. For the\\nlarger training splits, we use FocusNet to provide confusing class information\\nto an ensemble of multiple Patchout faSt Spectrogram Transformer (PaSST) models\\nand baseline models trained on the original sampling rate of 44.1 kHz. We use\\nKnowledge Distillation to distill the ensemble model to the baseline student\\nmodel. Training the systems on the TAU Urban Acoustic Scene 2022 Mobile\\ndevelopment dataset yielded the highest average testing accuracy of (62.21,\\n59.82, 56.81, 53.03, 47.97)% on split (100, 50, 25, 10, 5)% respectively over\\nthe three systems.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本技术报告中,我们介绍了 SNTL-NTU 团队为 2024 年声学场景和事件检测与分类(DCASE)挑战赛任务 1 "数据高效低复杂度声学场景分类 "提交的报告。我们引入了三个系统来处理不同规模的训练分片。对于较小的训练分区,我们探索了通过减少基通道数量来降低所提供基线模型的复杂性。我们引入了混合形式的数据增强,以增加训练样本的多样性。对于较大的训练分裂,我们使用 FocusNet 为多个 Patchout faSt Spectrogram Transformer (PaSST) 模型和在 44.1 kHz 原始采样率上训练的基线模型的集合提供混淆类信息。我们使用知识蒸馏(Knowledge Distillation)技术将集合模型蒸馏为基线学生模型。在 TAU Urban Acoustic Scene 2022 Mobiledevelopment 数据集上对系统进行训练后,三个系统的平均测试准确率分别为(62.21, 59.82, 56.81, 53.03, 47.97)%和(100, 50, 25, 10, 5)%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Efficient Acoustic Scene Classification using Teacher-Informed Confusing Class Instruction
In this technical report, we describe the SNTL-NTU team's submission for Task 1 Data-Efficient Low-Complexity Acoustic Scene Classification of the detection and classification of acoustic scenes and events (DCASE) 2024 challenge. Three systems are introduced to tackle training splits of different sizes. For small training splits, we explored reducing the complexity of the provided baseline model by reducing the number of base channels. We introduce data augmentation in the form of mixup to increase the diversity of training samples. For the larger training splits, we use FocusNet to provide confusing class information to an ensemble of multiple Patchout faSt Spectrogram Transformer (PaSST) models and baseline models trained on the original sampling rate of 44.1 kHz. We use Knowledge Distillation to distill the ensemble model to the baseline student model. Training the systems on the TAU Urban Acoustic Scene 2022 Mobile development dataset yielded the highest average testing accuracy of (62.21, 59.82, 56.81, 53.03, 47.97)% on split (100, 50, 25, 10, 5)% respectively over the three systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1