利用乒乓球拍弹跳声检测旋转

Thomas Gossard, Julian Schmalzl, Andreas Ziegler, Andreas Zell
{"title":"利用乒乓球拍弹跳声检测旋转","authors":"Thomas Gossard, Julian Schmalzl, Andreas Ziegler, Andreas Zell","doi":"arxiv-2409.11760","DOIUrl":null,"url":null,"abstract":"While table tennis players primarily rely on visual cues, sound provides\nvaluable information. The sound generated when the ball strikes the racket can\nassist in predicting the ball's trajectory, especially in determining the spin.\nWhile professional players can distinguish spin through these auditory cues,\nthey often go unnoticed by untrained players. In this paper, we demonstrate\nthat different rackets produce distinct sounds, which can be used to identify\nthe racket type. In addition, we show that the sound generated by the racket\ncan indicate whether spin was applied to the ball, or not. To achieve this, we\ncreated a comprehensive dataset featuring bounce sounds from 10 racket\nconfigurations, each applying various spins to the ball. To achieve millisecond\nlevel temporal accuracy, we first detect high frequency peaks that may\ncorrespond to table tennis ball bounces. We then refine these results using a\nCNN based classifier that accurately predicts both the type of racket used and\nwhether spin was applied.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin Detection Using Racket Bounce Sounds in Table Tennis\",\"authors\":\"Thomas Gossard, Julian Schmalzl, Andreas Ziegler, Andreas Zell\",\"doi\":\"arxiv-2409.11760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While table tennis players primarily rely on visual cues, sound provides\\nvaluable information. The sound generated when the ball strikes the racket can\\nassist in predicting the ball's trajectory, especially in determining the spin.\\nWhile professional players can distinguish spin through these auditory cues,\\nthey often go unnoticed by untrained players. In this paper, we demonstrate\\nthat different rackets produce distinct sounds, which can be used to identify\\nthe racket type. In addition, we show that the sound generated by the racket\\ncan indicate whether spin was applied to the ball, or not. To achieve this, we\\ncreated a comprehensive dataset featuring bounce sounds from 10 racket\\nconfigurations, each applying various spins to the ball. To achieve millisecond\\nlevel temporal accuracy, we first detect high frequency peaks that may\\ncorrespond to table tennis ball bounces. We then refine these results using a\\nCNN based classifier that accurately predicts both the type of racket used and\\nwhether spin was applied.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然乒乓球运动员主要依靠视觉线索,但声音也能提供宝贵的信息。当球撞击球拍时产生的声音可以帮助预测球的轨迹,特别是在确定旋转方面。虽然专业选手可以通过这些听觉线索分辨旋转,但未经训练的选手往往不会注意到这些线索。在本文中,我们证明了不同的球拍会产生不同的声音,这些声音可以用来识别球拍类型。此外,我们还证明,球拍产生的声音可以显示球是否旋转。为此,我们创建了一个综合数据集,其中包含来自 10 种球拍配置的反弹声音,每种配置都对球施加了不同的旋转。为了达到毫秒级的时间精度,我们首先检测出可能与乒乓球反弹相对应的高频峰值。然后,我们使用基于 CNN 的分类器完善这些结果,该分类器可准确预测所使用球拍的类型以及是否应用了旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spin Detection Using Racket Bounce Sounds in Table Tennis
While table tennis players primarily rely on visual cues, sound provides valuable information. The sound generated when the ball strikes the racket can assist in predicting the ball's trajectory, especially in determining the spin. While professional players can distinguish spin through these auditory cues, they often go unnoticed by untrained players. In this paper, we demonstrate that different rackets produce distinct sounds, which can be used to identify the racket type. In addition, we show that the sound generated by the racket can indicate whether spin was applied to the ball, or not. To achieve this, we created a comprehensive dataset featuring bounce sounds from 10 racket configurations, each applying various spins to the ball. To achieve millisecond level temporal accuracy, we first detect high frequency peaks that may correspond to table tennis ball bounces. We then refine these results using a CNN based classifier that accurately predicts both the type of racket used and whether spin was applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1