3DFacePolicy:采用扩散策略的语音驱动三维面部动画

Xuanmeng Sha, Liyun Zhang, Tomohiro Mashita, Yuki Uranishi
{"title":"3DFacePolicy:采用扩散策略的语音驱动三维面部动画","authors":"Xuanmeng Sha, Liyun Zhang, Tomohiro Mashita, Yuki Uranishi","doi":"arxiv-2409.10848","DOIUrl":null,"url":null,"abstract":"Audio-driven 3D facial animation has made immersive progress both in research\nand application developments. The newest approaches focus on Transformer-based\nmethods and diffusion-based methods, however, there is still gap in the\nvividness and emotional expression between the generated animation and real\nhuman face. To tackle this limitation, we propose 3DFacePolicy, a diffusion\npolicy model for 3D facial animation prediction. This method generates variable\nand realistic human facial movements by predicting the 3D vertex trajectory on\nthe 3D facial template with diffusion policy instead of facial generation for\nevery frame. It takes audio and vertex states as observations to predict the\nvertex trajectory and imitate real human facial expressions, which keeps the\ncontinuous and natural flow of human emotions. The experiments show that our\napproach is effective in variable and dynamic facial motion synthesizing.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3DFacePolicy: Speech-Driven 3D Facial Animation with Diffusion Policy\",\"authors\":\"Xuanmeng Sha, Liyun Zhang, Tomohiro Mashita, Yuki Uranishi\",\"doi\":\"arxiv-2409.10848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio-driven 3D facial animation has made immersive progress both in research\\nand application developments. The newest approaches focus on Transformer-based\\nmethods and diffusion-based methods, however, there is still gap in the\\nvividness and emotional expression between the generated animation and real\\nhuman face. To tackle this limitation, we propose 3DFacePolicy, a diffusion\\npolicy model for 3D facial animation prediction. This method generates variable\\nand realistic human facial movements by predicting the 3D vertex trajectory on\\nthe 3D facial template with diffusion policy instead of facial generation for\\nevery frame. It takes audio and vertex states as observations to predict the\\nvertex trajectory and imitate real human facial expressions, which keeps the\\ncontinuous and natural flow of human emotions. The experiments show that our\\napproach is effective in variable and dynamic facial motion synthesizing.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音频驱动的三维面部动画在研究和应用方面都取得了令人身临其境的进展。最新的方法主要集中在基于变换器的方法和基于扩散的方法上,但生成的动画与真实人脸在生动性和情感表达方面仍有差距。为了解决这个问题,我们提出了一种用于三维人脸动画预测的扩散策略模型--3DFacePolicy。这种方法通过在三维面部模板上预测三维顶点轨迹,用扩散策略生成多变而逼真的人脸动作,而不是每帧都生成面部动作。它以音频和顶点状态为观测对象,预测顶点轨迹,模仿真实的人类面部表情,保持了人类情感的连续和自然流露。实验表明,我们的方法在可变和动态的面部动作合成方面效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3DFacePolicy: Speech-Driven 3D Facial Animation with Diffusion Policy
Audio-driven 3D facial animation has made immersive progress both in research and application developments. The newest approaches focus on Transformer-based methods and diffusion-based methods, however, there is still gap in the vividness and emotional expression between the generated animation and real human face. To tackle this limitation, we propose 3DFacePolicy, a diffusion policy model for 3D facial animation prediction. This method generates variable and realistic human facial movements by predicting the 3D vertex trajectory on the 3D facial template with diffusion policy instead of facial generation for every frame. It takes audio and vertex states as observations to predict the vertex trajectory and imitate real human facial expressions, which keeps the continuous and natural flow of human emotions. The experiments show that our approach is effective in variable and dynamic facial motion synthesizing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1