基于自适应分组平衡二叉树的多用户云安全数据传输

P. Pavithra, B. Hariharan
{"title":"基于自适应分组平衡二叉树的多用户云安全数据传输","authors":"P. Pavithra, B. Hariharan","doi":"10.1007/s41870-024-02165-6","DOIUrl":null,"url":null,"abstract":"<p>Secure multi-keyword search for outsourced cloud data has gained popularity, especially for scenarios involving multiple data owners. This work proposes a method for secure multi-keyword searches across encrypted cloud data from various owners, utilizing an administrator or trustworthy third party for key management. The approach employs the TF-IDF model and Vector Space Model (VSM) to generate index and query vectors, and uses an advanced Attribute-Based Encryption (ABE) algorithm for data privacy. The Improved Dingo Optimization Algorithm (IDOA) optimally selects the key value. Encrypted emails are sent to a cloud server, and a Grouped Balanced Binary (GBB) tree structure is used for index construction. The Greedy Depth-First Search (GDFS) method efficiently searches the index, grouping relevant documents to exclude unnecessary ones. Performance is evaluated based on memory usage, execution time, encryption and decryption times, and search times, implemented in Java and tested on a cloud simulator.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive grouped balanced binary tree based multi user secure data transmission on cloud\",\"authors\":\"P. Pavithra, B. Hariharan\",\"doi\":\"10.1007/s41870-024-02165-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Secure multi-keyword search for outsourced cloud data has gained popularity, especially for scenarios involving multiple data owners. This work proposes a method for secure multi-keyword searches across encrypted cloud data from various owners, utilizing an administrator or trustworthy third party for key management. The approach employs the TF-IDF model and Vector Space Model (VSM) to generate index and query vectors, and uses an advanced Attribute-Based Encryption (ABE) algorithm for data privacy. The Improved Dingo Optimization Algorithm (IDOA) optimally selects the key value. Encrypted emails are sent to a cloud server, and a Grouped Balanced Binary (GBB) tree structure is used for index construction. The Greedy Depth-First Search (GDFS) method efficiently searches the index, grouping relevant documents to exclude unnecessary ones. Performance is evaluated based on memory usage, execution time, encryption and decryption times, and search times, implemented in Java and tested on a cloud simulator.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02165-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02165-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对外包云数据进行安全多关键字搜索已越来越受欢迎,尤其是在涉及多个数据所有者的场景中。本研究提出了一种方法,利用管理员或可信第三方进行密钥管理,对来自不同所有者的加密云数据进行安全的多关键字搜索。该方法采用 TF-IDF 模型和矢量空间模型(VSM)生成索引和查询向量,并使用先进的基于属性的加密(ABE)算法来保护数据隐私。改进的 Dingo 优化算法(IDOA)可优化选择密钥值。加密邮件被发送到云服务器,并使用分组平衡二进制(GBB)树结构构建索引。贪婪深度优先搜索(GDFS)方法可高效搜索索引,将相关文档分组,排除不必要的文档。性能评估基于内存使用量、执行时间、加密和解密时间以及搜索时间,采用 Java 实现,并在云模拟器上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive grouped balanced binary tree based multi user secure data transmission on cloud

Secure multi-keyword search for outsourced cloud data has gained popularity, especially for scenarios involving multiple data owners. This work proposes a method for secure multi-keyword searches across encrypted cloud data from various owners, utilizing an administrator or trustworthy third party for key management. The approach employs the TF-IDF model and Vector Space Model (VSM) to generate index and query vectors, and uses an advanced Attribute-Based Encryption (ABE) algorithm for data privacy. The Improved Dingo Optimization Algorithm (IDOA) optimally selects the key value. Encrypted emails are sent to a cloud server, and a Grouped Balanced Binary (GBB) tree structure is used for index construction. The Greedy Depth-First Search (GDFS) method efficiently searches the index, grouping relevant documents to exclude unnecessary ones. Performance is evaluated based on memory usage, execution time, encryption and decryption times, and search times, implemented in Java and tested on a cloud simulator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical cryptanalysis of seven classical lightweight ciphers CNN-BO-LSTM: an ensemble framework for prognosis of liver cancer Architecting lymphoma fusion: PROMETHEE-II guided optimization of combination therapeutic synergy RBCA-ETS: enhancing extractive text summarization with contextual embedding and word-level attention RAMD and transient analysis of a juice clarification unit in sugar plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1