{"title":"表达 FOXO1 的中性粒细胞:创伤性脑损伤中的双刃剑","authors":"Dong-Dong Yang, Meng Zhao, Jia-Xiu Du, Yu Shi","doi":"10.1186/s40779-024-00571-2","DOIUrl":null,"url":null,"abstract":"<p>Traumatic brain injury (TBI) remains a prominent global cause of mortality and disability, accounting for an estimated 69 million new cases annually [1]. Both civilian and military populations face substantial health challenges due to TBI, particularly in military settings, where combat-related injuries introduce unique considerations for prevalence and management [2]. Despite notable advancements in acute care, our comprehension of the complex pathophysiological mechanisms underlying the long-term effects of TBI remains inadequate [3]. Although the initial mechanical impact triggers the cascade of injury, it is often the subsequent neuroinflammatory processes that propel progressive neuronal damage and lead to long-term neurological impairments [4, 5].</p><p>Neutrophils, the most prevalent circulating leukocytes and first-line defenders against pathogens, have long been recognized as key players in the acute inflammatory response following TBI [6]. Although their rapid infiltration into the injured cerebral tissue is crucial for debris clearance and the initiation of repair mechanisms, excessive or prolonged activation of neutrophils may exacerbate tissue damage and lead to poorer clinical outcomes.</p><p>The groundbreaking research conducted by Zhou et al. [7] published in <i>Military Medical Research</i> unveiled novel insights into the dual role of neutrophils in TBI. They identified a distinct subpopulation of neutrophils characterized by elevated expression of the transcription factor forkhead box protein O1 (FOXO1). This FOXO1-high neutrophil subpopulation predominates during the acute neuroinflammatory response and, unexpectedly, persists into the chronic phase, thereby challenging the traditional perception of neutrophils as short-lived effector cells. These cells exhibit unique characteristics that contribute to both acute and chronic TBI pathologies. In the acute phase, they exacerbate immediate cerebral damage. Conversely, in the chronic phase, FOXO1-high neutrophils disrupt iron homeostasis with oligodendrocytes through the FOXO1-transferrin receptor axis, resulting in myelin loss and depression-like behaviors. This innovative perspective on neutrophil-oligodendrocyte interactions illuminates the intricate crosstalk between immune responses and nervous system functions following TBI, thus emphasizing the multifaceted role of neutrophils in chronic neuroinflammation.</p><p>Zhou et al. [7] also elucidated the molecular mechanisms that underpin the distinctive characteristics of FOXO1-high neutrophils in TBI pathogenesis. Mechanistically, their research revealed that FOXO1 directly enhances both the anti-apoptotic capacity and interleukin-6 production in neutrophils by upregulating the novel target gene <i>versican</i> (<i>VCAN</i>) during the acute phase. Additionally, they demonstrated that FOXO1 induces a metabolic shift from glycolysis to aerobic oxidation in neutrophils. This metabolic reprogramming may contribute to the altered cellular functions and extended lifespan of these cells. These findings highlight the complex and potentially detrimental role of FOXO1-high neutrophils in TBI pathogenesis. However, it is crucial to recognize that neutrophils also fulfill essential roles in host defense, wound healing, and tissue remodeling following injury [8, 9]. The dual nature of neutrophils emphasizes the necessity for nuanced therapeutic approaches. Emerging therapeutic approaches should selectively target the adverse effects associated with FOXO1-high neutrophils while preserving their protective functions, potentially through modulation of specific signaling pathways or effector functions rather than indiscriminately depleting these cells.</p><p>The implications of this study extend well beyond TBI, potentially transforming our comprehension of neuroinflammation across a spectrum of central nervous system disorders. This research unveils novel therapeutic pathways for the management of various neuroinflammation-related diseases, including neurodegenerative disorders, stroke, and multiple sclerosis [10, 11]. Such a paradigm shift in understanding neutrophil behavior necessitates a reevaluation of their roles in neurological pathologies. These revelations lay the groundwork for innovative immunomodulatory strategies, with the FOXO1-VCAN signaling pathway emerging as a promising target for the development of new therapeutic interventions.</p><p>Nevertheless, several pivotal questions remain unresolved. The upstream signals that trigger FOXO1 upregulation in neutrophils following TBI and the mechanisms responsible for the persistent infiltration of FOXO1-high neutrophils into the injury site during the chronic phase are still unclear. Clarifying these mechanisms is a paramount research priority. Translational research should focus on evaluating the therapeutic potential and safety of targeting FOXO1-high neutrophils in patients with TBI, particularly concerning possible side effects associated with such interventions. It is essential to validate these findings in TBI patients and perform preclinical studies to assess the safety and efficacy of potential therapies before implementing these discoveries into clinical practice.</p><p>Zhou et al. [7] have significantly advanced our understanding of TBI pathogenesis, laying a foundation for the development of targeted therapies with profound implications. Future applications of this research hold the potential to revolutionize TBI management in both civilian and military contexts. In clinical settings, personalized treatment protocols based on individual neutrophil profiles may effectively limit acute neuroinflammation and alleviate long-term neurological deficits. Longitudinal studies monitoring FOXO1-high neutrophils in TBI patients could validate their utility as biomarkers for predicting the risk of chronic complications. In military medicine, these findings could guide the development of innovative diagnostic and therapeutic strategies for combat-related TBI. Implementing rapid field testing for FOXO1-high neutrophils may facilitate early triage and treatment decisions in combat situations. Furthermore, establishing long-term monitoring protocols for veterans and developing targeted post-combat interventions aimed at regulating neutrophil function during the subacute and chronic phases of TBI could significantly improve outcomes. These strategies may assist in predicting and potentially preventing delayed-onset neurological complications, including long-term cognitive deficits and depression, thereby addressing the unique challenges faced by military personnel [12, 13]. As research continues to elucidate the upstream regulators of FOXO1 and mechanisms underlying sustained neutrophil infiltration, the potential applications of targeting FOXO1-high neutrophils could be fully realized, offering new hope for improved management of TBI across diverse populations.</p><p>Not applicable.</p><dl><dt style=\"min-width:50px;\"><dfn>TBI:</dfn></dt><dd>\n<p>Traumatic brain injury</p>\n</dd><dt style=\"min-width:50px;\"><dfn>FOXO1:</dfn></dt><dd>\n<p>Forkhead box protein O1</p>\n</dd></dl><ol data-track-component=\"outbound reference\" data-track-context=\"references section\"><li data-counter=\"1.\"><p>Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–97.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\"2.\"><p>Hussain SF, Raza Z, Cash ATG, Zampieri T, Mazzoli RA, Kardon RH, et al. Traumatic brain injury and sight loss in military and veteran populations – a review. Mil Med Res. 2021;8(1):42.</p><p>PubMed PubMed Central Google Scholar </p></li><li data-counter=\"3.\"><p>Kong LZ, Zhang RL, Hu SH, Lai JB. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil Med Res. 2022;9(1):2.</p><p>PubMed PubMed Central Google Scholar </p></li><li data-counter=\"4.\"><p>Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. 2021;71(9):1725–42.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"5.\"><p>Prabhakar NK, Khan H, Grewal AK, Singh TG. Intervention of neuroinflammation in the traumatic brain injury trajectory: in vivo and clinical approaches. Int Immunopharmacol. 2022;108:108902.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"6.\"><p>Alam A, Thelin EP, Tajsic T, Khan DZ, Khellaf A, Patani R, et al. Cellular infiltration in traumatic brain injury. J Neuroinflam. 2020;17:328.</p><p>Article CAS Google Scholar </p></li><li data-counter=\"7.\"><p>Zhou M, Liu YWY, He YH, Zhang JY, Guo H, Wang H, et al. FOXO1 reshapes neutrophils to aggravate acute brain damage and promote late depression after traumatic brain injury. Mil Med Res. 2024;11(1):20.</p><p>CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"8.\"><p>Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The neutrophil. Immunity. 2021;54(7):1377–91.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"9.\"><p>Lu YZ, Nayer B, Singh SK, Alshoubaki YK, Yuan E, Park AJ, et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature. 2024;628(8008):604–11.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"10.\"><p>Fredi BM, de Labio RW, Rasmussen LT, Chagas EFB, Chen ES, Turecki G, et al. CDK10, CDK11, FOXO1, and FOXO3 gene expression in Alzheimer’s disease encephalic samples. Cell Mol Neurobiol. 2023;43(6):2953–62.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"11.\"><p>Edgünlü TG, Ünal Y, Çelik SK, Genç Ö, Emre U, Kutlu G. The effect of <i>FOXO</i> gene family variants and global DNA metylation on RRMS disease. Gene. 2020;726:144172.</p><p>Article Google Scholar </p></li><li data-counter=\"12.\"><p>Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27(6):954–63.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"13.\"><p>Raza Z, Hussain SF, Ftouni S, Spitz G, Caplin N, Foster RG, et al. Dementia in military and veteran populations: a review of risk factors-traumatic brain injury, post-traumatic stress disorder, deployment, and sleep. Mil Med Res. 2021;8(1):55.</p><p>PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><p>Not applicable.</p><p>This work was supported by the National Natural Science Foundation of China (82102645), the Guangdong Basic and Applied Basic Research Foundation (2021A1515011042), and the China Postdoctoral Science Foundation (2019M662995).</p><h3>Authors and Affiliations</h3><ol><li><p>Department of Neurology, the Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou, 450000, China</p><p>Dong-Dong Yang, Meng Zhao & Jia-Xiu Du</p></li><li><p>Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China</p><p>Yu Shi</p></li></ol><span>Authors</span><ol><li><span>Dong-Dong Yang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Meng Zhao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jia-Xiu Du</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yu Shi</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Contributions</h3><p>DDY, MZ, JXD, and YS drafted the original manuscript. All authors read and approved the final manuscript.</p><h3>Corresponding author</h3><p>Correspondence to Yu Shi.</p><h3>Ethics approval and consent to participate</h3>\n<p>Not applicable.</p>\n<h3>Consent for publication</h3>\n<p>Not applicable.</p>\n<h3>Competing interests</h3>\n<p>The authors declare that they have no competing interests.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</p>\n<p>Reprints and permissions</p><img alt=\"Check for updates. Verify currency and authenticity via CrossMark\" height=\"81\" loading=\"lazy\" src=\"\" width=\"57\"/><h3>Cite this article</h3><p>Yang, DD., Zhao, M., Du, JX. <i>et al.</i> FOXO1-expressing neutrophils: a double-edged sword in traumatic brain injury. <i>Military Med Res</i> <b>11</b>, 65 (2024). https://doi.org/10.1186/s40779-024-00571-2</p><p>Download citation<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><ul data-test=\"publication-history\"><li><p>Received<span>: </span><span><time datetime=\"2024-07-30\">30 July 2024</time></span></p></li><li><p>Accepted<span>: </span><span><time datetime=\"2024-09-05\">05 September 2024</time></span></p></li><li><p>Published<span>: </span><span><time datetime=\"2024-09-19\">19 September 2024</time></span></p></li><li><p>DOI</abbr><span>: </span><span>https://doi.org/10.1186/s40779-024-00571-2</span></p></li></ul><h3>Share this article</h3><p>Anyone you share the following link with will be able to read this content:</p><button data-track=\"click\" data-track-action=\"get shareable link\" data-track-external=\"\" data-track-label=\"button\" type=\"button\">Get shareable link</button><p>Sorry, a shareable link is not currently available for this article.</p><p data-track=\"click\" data-track-action=\"select share url\" data-track-label=\"button\"></p><button data-track=\"click\" data-track-action=\"copy share url\" data-track-external=\"\" data-track-label=\"button\" type=\"button\">Copy to clipboard</button><p> Provided by the Springer Nature SharedIt content-sharing initiative </p><h3>Keywords</h3><ul><li><span>Traumatic brain injury (TBI)</span></li><li><span>FOXO1-high expressing neutrophils</span></li><li><span>Neuroinflammation</span></li><li><span>Acute brain damage</span></li></ul>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":null,"pages":null},"PeriodicalIF":16.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FOXO1-expressing neutrophils: a double-edged sword in traumatic brain injury\",\"authors\":\"Dong-Dong Yang, Meng Zhao, Jia-Xiu Du, Yu Shi\",\"doi\":\"10.1186/s40779-024-00571-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traumatic brain injury (TBI) remains a prominent global cause of mortality and disability, accounting for an estimated 69 million new cases annually [1]. Both civilian and military populations face substantial health challenges due to TBI, particularly in military settings, where combat-related injuries introduce unique considerations for prevalence and management [2]. Despite notable advancements in acute care, our comprehension of the complex pathophysiological mechanisms underlying the long-term effects of TBI remains inadequate [3]. Although the initial mechanical impact triggers the cascade of injury, it is often the subsequent neuroinflammatory processes that propel progressive neuronal damage and lead to long-term neurological impairments [4, 5].</p><p>Neutrophils, the most prevalent circulating leukocytes and first-line defenders against pathogens, have long been recognized as key players in the acute inflammatory response following TBI [6]. Although their rapid infiltration into the injured cerebral tissue is crucial for debris clearance and the initiation of repair mechanisms, excessive or prolonged activation of neutrophils may exacerbate tissue damage and lead to poorer clinical outcomes.</p><p>The groundbreaking research conducted by Zhou et al. [7] published in <i>Military Medical Research</i> unveiled novel insights into the dual role of neutrophils in TBI. They identified a distinct subpopulation of neutrophils characterized by elevated expression of the transcription factor forkhead box protein O1 (FOXO1). This FOXO1-high neutrophil subpopulation predominates during the acute neuroinflammatory response and, unexpectedly, persists into the chronic phase, thereby challenging the traditional perception of neutrophils as short-lived effector cells. These cells exhibit unique characteristics that contribute to both acute and chronic TBI pathologies. In the acute phase, they exacerbate immediate cerebral damage. Conversely, in the chronic phase, FOXO1-high neutrophils disrupt iron homeostasis with oligodendrocytes through the FOXO1-transferrin receptor axis, resulting in myelin loss and depression-like behaviors. This innovative perspective on neutrophil-oligodendrocyte interactions illuminates the intricate crosstalk between immune responses and nervous system functions following TBI, thus emphasizing the multifaceted role of neutrophils in chronic neuroinflammation.</p><p>Zhou et al. [7] also elucidated the molecular mechanisms that underpin the distinctive characteristics of FOXO1-high neutrophils in TBI pathogenesis. Mechanistically, their research revealed that FOXO1 directly enhances both the anti-apoptotic capacity and interleukin-6 production in neutrophils by upregulating the novel target gene <i>versican</i> (<i>VCAN</i>) during the acute phase. Additionally, they demonstrated that FOXO1 induces a metabolic shift from glycolysis to aerobic oxidation in neutrophils. This metabolic reprogramming may contribute to the altered cellular functions and extended lifespan of these cells. These findings highlight the complex and potentially detrimental role of FOXO1-high neutrophils in TBI pathogenesis. However, it is crucial to recognize that neutrophils also fulfill essential roles in host defense, wound healing, and tissue remodeling following injury [8, 9]. The dual nature of neutrophils emphasizes the necessity for nuanced therapeutic approaches. Emerging therapeutic approaches should selectively target the adverse effects associated with FOXO1-high neutrophils while preserving their protective functions, potentially through modulation of specific signaling pathways or effector functions rather than indiscriminately depleting these cells.</p><p>The implications of this study extend well beyond TBI, potentially transforming our comprehension of neuroinflammation across a spectrum of central nervous system disorders. This research unveils novel therapeutic pathways for the management of various neuroinflammation-related diseases, including neurodegenerative disorders, stroke, and multiple sclerosis [10, 11]. Such a paradigm shift in understanding neutrophil behavior necessitates a reevaluation of their roles in neurological pathologies. These revelations lay the groundwork for innovative immunomodulatory strategies, with the FOXO1-VCAN signaling pathway emerging as a promising target for the development of new therapeutic interventions.</p><p>Nevertheless, several pivotal questions remain unresolved. The upstream signals that trigger FOXO1 upregulation in neutrophils following TBI and the mechanisms responsible for the persistent infiltration of FOXO1-high neutrophils into the injury site during the chronic phase are still unclear. Clarifying these mechanisms is a paramount research priority. Translational research should focus on evaluating the therapeutic potential and safety of targeting FOXO1-high neutrophils in patients with TBI, particularly concerning possible side effects associated with such interventions. It is essential to validate these findings in TBI patients and perform preclinical studies to assess the safety and efficacy of potential therapies before implementing these discoveries into clinical practice.</p><p>Zhou et al. [7] have significantly advanced our understanding of TBI pathogenesis, laying a foundation for the development of targeted therapies with profound implications. Future applications of this research hold the potential to revolutionize TBI management in both civilian and military contexts. In clinical settings, personalized treatment protocols based on individual neutrophil profiles may effectively limit acute neuroinflammation and alleviate long-term neurological deficits. Longitudinal studies monitoring FOXO1-high neutrophils in TBI patients could validate their utility as biomarkers for predicting the risk of chronic complications. In military medicine, these findings could guide the development of innovative diagnostic and therapeutic strategies for combat-related TBI. Implementing rapid field testing for FOXO1-high neutrophils may facilitate early triage and treatment decisions in combat situations. Furthermore, establishing long-term monitoring protocols for veterans and developing targeted post-combat interventions aimed at regulating neutrophil function during the subacute and chronic phases of TBI could significantly improve outcomes. These strategies may assist in predicting and potentially preventing delayed-onset neurological complications, including long-term cognitive deficits and depression, thereby addressing the unique challenges faced by military personnel [12, 13]. As research continues to elucidate the upstream regulators of FOXO1 and mechanisms underlying sustained neutrophil infiltration, the potential applications of targeting FOXO1-high neutrophils could be fully realized, offering new hope for improved management of TBI across diverse populations.</p><p>Not applicable.</p><dl><dt style=\\\"min-width:50px;\\\"><dfn>TBI:</dfn></dt><dd>\\n<p>Traumatic brain injury</p>\\n</dd><dt style=\\\"min-width:50px;\\\"><dfn>FOXO1:</dfn></dt><dd>\\n<p>Forkhead box protein O1</p>\\n</dd></dl><ol data-track-component=\\\"outbound reference\\\" data-track-context=\\\"references section\\\"><li data-counter=\\\"1.\\\"><p>Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–97.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\\\"2.\\\"><p>Hussain SF, Raza Z, Cash ATG, Zampieri T, Mazzoli RA, Kardon RH, et al. Traumatic brain injury and sight loss in military and veteran populations – a review. Mil Med Res. 2021;8(1):42.</p><p>PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"3.\\\"><p>Kong LZ, Zhang RL, Hu SH, Lai JB. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil Med Res. 2022;9(1):2.</p><p>PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"4.\\\"><p>Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. 2021;71(9):1725–42.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"5.\\\"><p>Prabhakar NK, Khan H, Grewal AK, Singh TG. Intervention of neuroinflammation in the traumatic brain injury trajectory: in vivo and clinical approaches. Int Immunopharmacol. 2022;108:108902.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"6.\\\"><p>Alam A, Thelin EP, Tajsic T, Khan DZ, Khellaf A, Patani R, et al. Cellular infiltration in traumatic brain injury. J Neuroinflam. 2020;17:328.</p><p>Article CAS Google Scholar </p></li><li data-counter=\\\"7.\\\"><p>Zhou M, Liu YWY, He YH, Zhang JY, Guo H, Wang H, et al. FOXO1 reshapes neutrophils to aggravate acute brain damage and promote late depression after traumatic brain injury. Mil Med Res. 2024;11(1):20.</p><p>CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"8.\\\"><p>Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The neutrophil. Immunity. 2021;54(7):1377–91.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"9.\\\"><p>Lu YZ, Nayer B, Singh SK, Alshoubaki YK, Yuan E, Park AJ, et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature. 2024;628(8008):604–11.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"10.\\\"><p>Fredi BM, de Labio RW, Rasmussen LT, Chagas EFB, Chen ES, Turecki G, et al. CDK10, CDK11, FOXO1, and FOXO3 gene expression in Alzheimer’s disease encephalic samples. Cell Mol Neurobiol. 2023;43(6):2953–62.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"11.\\\"><p>Edgünlü TG, Ünal Y, Çelik SK, Genç Ö, Emre U, Kutlu G. The effect of <i>FOXO</i> gene family variants and global DNA metylation on RRMS disease. Gene. 2020;726:144172.</p><p>Article Google Scholar </p></li><li data-counter=\\\"12.\\\"><p>Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27(6):954–63.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"13.\\\"><p>Raza Z, Hussain SF, Ftouni S, Spitz G, Caplin N, Foster RG, et al. Dementia in military and veteran populations: a review of risk factors-traumatic brain injury, post-traumatic stress disorder, deployment, and sleep. Mil Med Res. 2021;8(1):55.</p><p>PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-download-medium\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></p><p>Not applicable.</p><p>This work was supported by the National Natural Science Foundation of China (82102645), the Guangdong Basic and Applied Basic Research Foundation (2021A1515011042), and the China Postdoctoral Science Foundation (2019M662995).</p><h3>Authors and Affiliations</h3><ol><li><p>Department of Neurology, the Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou, 450000, China</p><p>Dong-Dong Yang, Meng Zhao & Jia-Xiu Du</p></li><li><p>Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China</p><p>Yu Shi</p></li></ol><span>Authors</span><ol><li><span>Dong-Dong Yang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Meng Zhao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jia-Xiu Du</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yu Shi</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Contributions</h3><p>DDY, MZ, JXD, and YS drafted the original manuscript. All authors read and approved the final manuscript.</p><h3>Corresponding author</h3><p>Correspondence to Yu Shi.</p><h3>Ethics approval and consent to participate</h3>\\n<p>Not applicable.</p>\\n<h3>Consent for publication</h3>\\n<p>Not applicable.</p>\\n<h3>Competing interests</h3>\\n<p>The authors declare that they have no competing interests.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</p>\\n<p>Reprints and permissions</p><img alt=\\\"Check for updates. Verify currency and authenticity via CrossMark\\\" height=\\\"81\\\" loading=\\\"lazy\\\" src=\\\"\\\" width=\\\"57\\\"/><h3>Cite this article</h3><p>Yang, DD., Zhao, M., Du, JX. <i>et al.</i> FOXO1-expressing neutrophils: a double-edged sword in traumatic brain injury. <i>Military Med Res</i> <b>11</b>, 65 (2024). https://doi.org/10.1186/s40779-024-00571-2</p><p>Download citation<svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-download-medium\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></p><ul data-test=\\\"publication-history\\\"><li><p>Received<span>: </span><span><time datetime=\\\"2024-07-30\\\">30 July 2024</time></span></p></li><li><p>Accepted<span>: </span><span><time datetime=\\\"2024-09-05\\\">05 September 2024</time></span></p></li><li><p>Published<span>: </span><span><time datetime=\\\"2024-09-19\\\">19 September 2024</time></span></p></li><li><p>DOI</abbr><span>: </span><span>https://doi.org/10.1186/s40779-024-00571-2</span></p></li></ul><h3>Share this article</h3><p>Anyone you share the following link with will be able to read this content:</p><button data-track=\\\"click\\\" data-track-action=\\\"get shareable link\\\" data-track-external=\\\"\\\" data-track-label=\\\"button\\\" type=\\\"button\\\">Get shareable link</button><p>Sorry, a shareable link is not currently available for this article.</p><p data-track=\\\"click\\\" data-track-action=\\\"select share url\\\" data-track-label=\\\"button\\\"></p><button data-track=\\\"click\\\" data-track-action=\\\"copy share url\\\" data-track-external=\\\"\\\" data-track-label=\\\"button\\\" type=\\\"button\\\">Copy to clipboard</button><p> Provided by the Springer Nature SharedIt content-sharing initiative </p><h3>Keywords</h3><ul><li><span>Traumatic brain injury (TBI)</span></li><li><span>FOXO1-high expressing neutrophils</span></li><li><span>Neuroinflammation</span></li><li><span>Acute brain damage</span></li></ul>\",\"PeriodicalId\":18581,\"journal\":{\"name\":\"Military Medical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40779-024-00571-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-024-00571-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
摘要
作者及工作单位河南中医药大学第五临床医学院(郑州市人民医院)神经内科,郑州,450000杨冬冬,赵萌&;杜家秀南方医科大学珠江医院康复科,广州,510282、中国Yu Shi作者Dong-Dong Yang查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Meng Zhao查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Jia-Xiu Du查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Yu Shi查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者ContributionsDDY、MZ、JXD和YS起草了原稿。开放获取本文采用知识共享署名 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式使用、共享、改编、分发和复制,只要您适当注明原作者和来源,提供知识共享许可协议的链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,您需要直接从版权所有者处获得许可。如需查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/。创意共享公共领域专用免责声明(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文提供的数据,除非在数据的信用行中另有说明。转载与授权引用本文Yang, DD., Zhao, M., Du, JX. et al. FOXO1-expressing neutrophils: a double-edged sword in traumatic brain injury.军事医学研究 11, 65 (2024). https://doi.org/10.1186/s40779-024-00571-2Download citationReceived:30 July 2024Accepted:05 September 2024Published: 19 September 2024DOI: https://doi.org/10.1186/s40779-024-00571-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative Keywords创伤性脑损伤(TBI)FOXO1-高表达中性粒细胞神经炎症急性脑损伤
FOXO1-expressing neutrophils: a double-edged sword in traumatic brain injury
Traumatic brain injury (TBI) remains a prominent global cause of mortality and disability, accounting for an estimated 69 million new cases annually [1]. Both civilian and military populations face substantial health challenges due to TBI, particularly in military settings, where combat-related injuries introduce unique considerations for prevalence and management [2]. Despite notable advancements in acute care, our comprehension of the complex pathophysiological mechanisms underlying the long-term effects of TBI remains inadequate [3]. Although the initial mechanical impact triggers the cascade of injury, it is often the subsequent neuroinflammatory processes that propel progressive neuronal damage and lead to long-term neurological impairments [4, 5].
Neutrophils, the most prevalent circulating leukocytes and first-line defenders against pathogens, have long been recognized as key players in the acute inflammatory response following TBI [6]. Although their rapid infiltration into the injured cerebral tissue is crucial for debris clearance and the initiation of repair mechanisms, excessive or prolonged activation of neutrophils may exacerbate tissue damage and lead to poorer clinical outcomes.
The groundbreaking research conducted by Zhou et al. [7] published in Military Medical Research unveiled novel insights into the dual role of neutrophils in TBI. They identified a distinct subpopulation of neutrophils characterized by elevated expression of the transcription factor forkhead box protein O1 (FOXO1). This FOXO1-high neutrophil subpopulation predominates during the acute neuroinflammatory response and, unexpectedly, persists into the chronic phase, thereby challenging the traditional perception of neutrophils as short-lived effector cells. These cells exhibit unique characteristics that contribute to both acute and chronic TBI pathologies. In the acute phase, they exacerbate immediate cerebral damage. Conversely, in the chronic phase, FOXO1-high neutrophils disrupt iron homeostasis with oligodendrocytes through the FOXO1-transferrin receptor axis, resulting in myelin loss and depression-like behaviors. This innovative perspective on neutrophil-oligodendrocyte interactions illuminates the intricate crosstalk between immune responses and nervous system functions following TBI, thus emphasizing the multifaceted role of neutrophils in chronic neuroinflammation.
Zhou et al. [7] also elucidated the molecular mechanisms that underpin the distinctive characteristics of FOXO1-high neutrophils in TBI pathogenesis. Mechanistically, their research revealed that FOXO1 directly enhances both the anti-apoptotic capacity and interleukin-6 production in neutrophils by upregulating the novel target gene versican (VCAN) during the acute phase. Additionally, they demonstrated that FOXO1 induces a metabolic shift from glycolysis to aerobic oxidation in neutrophils. This metabolic reprogramming may contribute to the altered cellular functions and extended lifespan of these cells. These findings highlight the complex and potentially detrimental role of FOXO1-high neutrophils in TBI pathogenesis. However, it is crucial to recognize that neutrophils also fulfill essential roles in host defense, wound healing, and tissue remodeling following injury [8, 9]. The dual nature of neutrophils emphasizes the necessity for nuanced therapeutic approaches. Emerging therapeutic approaches should selectively target the adverse effects associated with FOXO1-high neutrophils while preserving their protective functions, potentially through modulation of specific signaling pathways or effector functions rather than indiscriminately depleting these cells.
The implications of this study extend well beyond TBI, potentially transforming our comprehension of neuroinflammation across a spectrum of central nervous system disorders. This research unveils novel therapeutic pathways for the management of various neuroinflammation-related diseases, including neurodegenerative disorders, stroke, and multiple sclerosis [10, 11]. Such a paradigm shift in understanding neutrophil behavior necessitates a reevaluation of their roles in neurological pathologies. These revelations lay the groundwork for innovative immunomodulatory strategies, with the FOXO1-VCAN signaling pathway emerging as a promising target for the development of new therapeutic interventions.
Nevertheless, several pivotal questions remain unresolved. The upstream signals that trigger FOXO1 upregulation in neutrophils following TBI and the mechanisms responsible for the persistent infiltration of FOXO1-high neutrophils into the injury site during the chronic phase are still unclear. Clarifying these mechanisms is a paramount research priority. Translational research should focus on evaluating the therapeutic potential and safety of targeting FOXO1-high neutrophils in patients with TBI, particularly concerning possible side effects associated with such interventions. It is essential to validate these findings in TBI patients and perform preclinical studies to assess the safety and efficacy of potential therapies before implementing these discoveries into clinical practice.
Zhou et al. [7] have significantly advanced our understanding of TBI pathogenesis, laying a foundation for the development of targeted therapies with profound implications. Future applications of this research hold the potential to revolutionize TBI management in both civilian and military contexts. In clinical settings, personalized treatment protocols based on individual neutrophil profiles may effectively limit acute neuroinflammation and alleviate long-term neurological deficits. Longitudinal studies monitoring FOXO1-high neutrophils in TBI patients could validate their utility as biomarkers for predicting the risk of chronic complications. In military medicine, these findings could guide the development of innovative diagnostic and therapeutic strategies for combat-related TBI. Implementing rapid field testing for FOXO1-high neutrophils may facilitate early triage and treatment decisions in combat situations. Furthermore, establishing long-term monitoring protocols for veterans and developing targeted post-combat interventions aimed at regulating neutrophil function during the subacute and chronic phases of TBI could significantly improve outcomes. These strategies may assist in predicting and potentially preventing delayed-onset neurological complications, including long-term cognitive deficits and depression, thereby addressing the unique challenges faced by military personnel [12, 13]. As research continues to elucidate the upstream regulators of FOXO1 and mechanisms underlying sustained neutrophil infiltration, the potential applications of targeting FOXO1-high neutrophils could be fully realized, offering new hope for improved management of TBI across diverse populations.
Not applicable.
TBI:
Traumatic brain injury
FOXO1:
Forkhead box protein O1
Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–97.
Article PubMed Google Scholar
Hussain SF, Raza Z, Cash ATG, Zampieri T, Mazzoli RA, Kardon RH, et al. Traumatic brain injury and sight loss in military and veteran populations – a review. Mil Med Res. 2021;8(1):42.
PubMed PubMed Central Google Scholar
Kong LZ, Zhang RL, Hu SH, Lai JB. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil Med Res. 2022;9(1):2.
PubMed PubMed Central Google Scholar
Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. 2021;71(9):1725–42.
Article CAS PubMed Google Scholar
Prabhakar NK, Khan H, Grewal AK, Singh TG. Intervention of neuroinflammation in the traumatic brain injury trajectory: in vivo and clinical approaches. Int Immunopharmacol. 2022;108:108902.
Article CAS PubMed Google Scholar
Alam A, Thelin EP, Tajsic T, Khan DZ, Khellaf A, Patani R, et al. Cellular infiltration in traumatic brain injury. J Neuroinflam. 2020;17:328.
Article CAS Google Scholar
Zhou M, Liu YWY, He YH, Zhang JY, Guo H, Wang H, et al. FOXO1 reshapes neutrophils to aggravate acute brain damage and promote late depression after traumatic brain injury. Mil Med Res. 2024;11(1):20.
CAS PubMed PubMed Central Google Scholar
Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The neutrophil. Immunity. 2021;54(7):1377–91.
Article CAS PubMed Google Scholar
Lu YZ, Nayer B, Singh SK, Alshoubaki YK, Yuan E, Park AJ, et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature. 2024;628(8008):604–11.
Article CAS PubMed PubMed Central Google Scholar
Fredi BM, de Labio RW, Rasmussen LT, Chagas EFB, Chen ES, Turecki G, et al. CDK10, CDK11, FOXO1, and FOXO3 gene expression in Alzheimer’s disease encephalic samples. Cell Mol Neurobiol. 2023;43(6):2953–62.
Article CAS PubMed Google Scholar
Edgünlü TG, Ünal Y, Çelik SK, Genç Ö, Emre U, Kutlu G. The effect of FOXO gene family variants and global DNA metylation on RRMS disease. Gene. 2020;726:144172.
Article Google Scholar
Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27(6):954–63.
Article CAS PubMed Google Scholar
Raza Z, Hussain SF, Ftouni S, Spitz G, Caplin N, Foster RG, et al. Dementia in military and veteran populations: a review of risk factors-traumatic brain injury, post-traumatic stress disorder, deployment, and sleep. Mil Med Res. 2021;8(1):55.
PubMed PubMed Central Google Scholar
Download references
Not applicable.
This work was supported by the National Natural Science Foundation of China (82102645), the Guangdong Basic and Applied Basic Research Foundation (2021A1515011042), and the China Postdoctoral Science Foundation (2019M662995).
Authors and Affiliations
Department of Neurology, the Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou, 450000, China
Dong-Dong Yang, Meng Zhao & Jia-Xiu Du
Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
Yu Shi
Authors
Dong-Dong YangView author publications
You can also search for this author in PubMedGoogle Scholar
Meng ZhaoView author publications
You can also search for this author in PubMedGoogle Scholar
Jia-Xiu DuView author publications
You can also search for this author in PubMedGoogle Scholar
Yu ShiView author publications
You can also search for this author in PubMedGoogle Scholar
Contributions
DDY, MZ, JXD, and YS drafted the original manuscript. All authors read and approved the final manuscript.
Corresponding author
Correspondence to Yu Shi.
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Reprints and permissions
Cite this article
Yang, DD., Zhao, M., Du, JX. et al. FOXO1-expressing neutrophils: a double-edged sword in traumatic brain injury. Military Med Res11, 65 (2024). https://doi.org/10.1186/s40779-024-00571-2
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s40779-024-00571-2
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
期刊介绍:
Military Medical Research is an open-access, peer-reviewed journal that aims to share the most up-to-date evidence and innovative discoveries in a wide range of fields, including basic and clinical sciences, translational research, precision medicine, emerging interdisciplinary subjects, and advanced technologies. Our primary focus is on modern military medicine; however, we also encourage submissions from other related areas. This includes, but is not limited to, basic medical research with the potential for translation into practice, as well as clinical research that could impact medical care both in times of warfare and during peacetime military operations.