{"title":"Zr 对使用 Ag-Cu-Sn-In 填充金属钎焊的 304 不锈钢接头微观结构和机械性能的影响","authors":"Ling-ling Huang, Jian Qin, Jun-lan Huang, Hua Yu, Chao Jiang, Lu-yang Song, Zhuo-li Yu, Zhi-qian Liao, Yan-zhao Cai, Li Ma, Shi-zhong Wei","doi":"10.1007/s42243-024-01339-7","DOIUrl":null,"url":null,"abstract":"<p>The effect of Zr on the microstructure and mechanical properties of 304 stainless steel joints brazed with Ag–Cu fillers was studied. The incorporation of Zr had little effect on the solid–liquid phase line of the fillers, and the melting temperature range of the fillers was narrowed, which enhanced their fluidity and wettability. The presence of Zr in the form of heterogeneous particles augmented the nucleation rate during solidification, transforming the intermittently distributed gray-black coarse dendrites into cellular crystals. This structural transformation led to fragmentation and refinement of the microstructure. The dissolution of Zr into Ag and Cu promoted the transformation of low-angle grain boundaries to high-angle grain boundaries (HAGBs), hindering crack propagation. Zr element in the brazing seam led to grain refinement and increased density of grain boundaries. The grain refinement could disperse the stress, and HAGBs could resist the dislocation movement, improving the joint strength. The results display that when Zr content was 0.75 wt.%, the maximum strength was 221.1 MPa. The fracture occurred primarily at the brazing seam, exhibiting a ductile fracture.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"99 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Zr on microstructure and mechanical properties of 304 stainless steel joints brazed by Ag–Cu–Sn–In filler metal\",\"authors\":\"Ling-ling Huang, Jian Qin, Jun-lan Huang, Hua Yu, Chao Jiang, Lu-yang Song, Zhuo-li Yu, Zhi-qian Liao, Yan-zhao Cai, Li Ma, Shi-zhong Wei\",\"doi\":\"10.1007/s42243-024-01339-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of Zr on the microstructure and mechanical properties of 304 stainless steel joints brazed with Ag–Cu fillers was studied. The incorporation of Zr had little effect on the solid–liquid phase line of the fillers, and the melting temperature range of the fillers was narrowed, which enhanced their fluidity and wettability. The presence of Zr in the form of heterogeneous particles augmented the nucleation rate during solidification, transforming the intermittently distributed gray-black coarse dendrites into cellular crystals. This structural transformation led to fragmentation and refinement of the microstructure. The dissolution of Zr into Ag and Cu promoted the transformation of low-angle grain boundaries to high-angle grain boundaries (HAGBs), hindering crack propagation. Zr element in the brazing seam led to grain refinement and increased density of grain boundaries. The grain refinement could disperse the stress, and HAGBs could resist the dislocation movement, improving the joint strength. The results display that when Zr content was 0.75 wt.%, the maximum strength was 221.1 MPa. The fracture occurred primarily at the brazing seam, exhibiting a ductile fracture.</p>\",\"PeriodicalId\":16151,\"journal\":{\"name\":\"Journal of Iron and Steel Research International\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42243-024-01339-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01339-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Zr on microstructure and mechanical properties of 304 stainless steel joints brazed by Ag–Cu–Sn–In filler metal
The effect of Zr on the microstructure and mechanical properties of 304 stainless steel joints brazed with Ag–Cu fillers was studied. The incorporation of Zr had little effect on the solid–liquid phase line of the fillers, and the melting temperature range of the fillers was narrowed, which enhanced their fluidity and wettability. The presence of Zr in the form of heterogeneous particles augmented the nucleation rate during solidification, transforming the intermittently distributed gray-black coarse dendrites into cellular crystals. This structural transformation led to fragmentation and refinement of the microstructure. The dissolution of Zr into Ag and Cu promoted the transformation of low-angle grain boundaries to high-angle grain boundaries (HAGBs), hindering crack propagation. Zr element in the brazing seam led to grain refinement and increased density of grain boundaries. The grain refinement could disperse the stress, and HAGBs could resist the dislocation movement, improving the joint strength. The results display that when Zr content was 0.75 wt.%, the maximum strength was 221.1 MPa. The fracture occurred primarily at the brazing seam, exhibiting a ductile fracture.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..