儿童与成人二元互动中以自我为中心的说话者分类:从感知到计算建模

Tiantian Feng, Anfeng Xu, Xuan Shi, Somer Bishop, Shrikanth Narayanan
{"title":"儿童与成人二元互动中以自我为中心的说话者分类:从感知到计算建模","authors":"Tiantian Feng, Anfeng Xu, Xuan Shi, Somer Bishop, Shrikanth Narayanan","doi":"arxiv-2409.09340","DOIUrl":null,"url":null,"abstract":"Autism spectrum disorder (ASD) is a neurodevelopmental condition\ncharacterized by challenges in social communication, repetitive behavior, and\nsensory processing. One important research area in ASD is evaluating children's\nbehavioral changes over time during treatment. The standard protocol with this\nobjective is BOSCC, which involves dyadic interactions between a child and\nclinicians performing a pre-defined set of activities. A fundamental aspect of\nunderstanding children's behavior in these interactions is automatic speech\nunderstanding, particularly identifying who speaks and when. Conventional\napproaches in this area heavily rely on speech samples recorded from a\nspectator perspective, and there is limited research on egocentric speech\nmodeling. In this study, we design an experiment to perform speech sampling in\nBOSCC interviews from an egocentric perspective using wearable sensors and\nexplore pre-training Ego4D speech samples to enhance child-adult speaker\nclassification in dyadic interactions. Our findings highlight the potential of\negocentric speech collection and pre-training to improve speaker classification\naccuracy.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling\",\"authors\":\"Tiantian Feng, Anfeng Xu, Xuan Shi, Somer Bishop, Shrikanth Narayanan\",\"doi\":\"arxiv-2409.09340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autism spectrum disorder (ASD) is a neurodevelopmental condition\\ncharacterized by challenges in social communication, repetitive behavior, and\\nsensory processing. One important research area in ASD is evaluating children's\\nbehavioral changes over time during treatment. The standard protocol with this\\nobjective is BOSCC, which involves dyadic interactions between a child and\\nclinicians performing a pre-defined set of activities. A fundamental aspect of\\nunderstanding children's behavior in these interactions is automatic speech\\nunderstanding, particularly identifying who speaks and when. Conventional\\napproaches in this area heavily rely on speech samples recorded from a\\nspectator perspective, and there is limited research on egocentric speech\\nmodeling. In this study, we design an experiment to perform speech sampling in\\nBOSCC interviews from an egocentric perspective using wearable sensors and\\nexplore pre-training Ego4D speech samples to enhance child-adult speaker\\nclassification in dyadic interactions. Our findings highlight the potential of\\negocentric speech collection and pre-training to improve speaker classification\\naccuracy.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自闭症谱系障碍(ASD)是一种以社交沟通、重复行为和感官处理方面的障碍为特征的神经发育疾病。自闭症谱系障碍的一个重要研究领域是评估儿童在治疗期间的行为变化。实现这一目标的标准方案是 BOSCC,其中包括儿童与临床医生之间的双人互动,并进行一组预定义的活动。理解儿童在这些互动中的行为的一个基本方面是自动言语理解,特别是识别谁在什么时候说话。这方面的传统方法严重依赖于从旁观者角度记录的语音样本,而以自我为中心的语音建模研究却很有限。在本研究中,我们设计了一项实验,利用可穿戴传感器从自我中心视角对 BOSCC 访谈进行语音采样,并探索通过预先训练 Ego4D 语音样本来增强儿童与成人在双向互动中的说话者分类。我们的研究结果凸显了以自我为中心的语音收集和预训练在提高说话者分类准确性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication, repetitive behavior, and sensory processing. One important research area in ASD is evaluating children's behavioral changes over time during treatment. The standard protocol with this objective is BOSCC, which involves dyadic interactions between a child and clinicians performing a pre-defined set of activities. A fundamental aspect of understanding children's behavior in these interactions is automatic speech understanding, particularly identifying who speaks and when. Conventional approaches in this area heavily rely on speech samples recorded from a spectator perspective, and there is limited research on egocentric speech modeling. In this study, we design an experiment to perform speech sampling in BOSCC interviews from an egocentric perspective using wearable sensors and explore pre-training Ego4D speech samples to enhance child-adult speaker classification in dyadic interactions. Our findings highlight the potential of egocentric speech collection and pre-training to improve speaker classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1