利用基于变换器的分层对齐和分离式跨模态表示进行音频文本检索

Yifei Xin, Zhihong Zhu, Xuxin Cheng, Xusheng Yang, Yuexian Zou
{"title":"利用基于变换器的分层对齐和分离式跨模态表示进行音频文本检索","authors":"Yifei Xin, Zhihong Zhu, Xuxin Cheng, Xusheng Yang, Yuexian Zou","doi":"arxiv-2409.09256","DOIUrl":null,"url":null,"abstract":"Most existing audio-text retrieval (ATR) approaches typically rely on a\nsingle-level interaction to associate audio and text, limiting their ability to\nalign different modalities and leading to suboptimal matches. In this work, we\npresent a novel ATR framework that leverages two-stream Transformers in\nconjunction with a Hierarchical Alignment (THA) module to identify multi-level\ncorrespondences of different Transformer blocks between audio and text.\nMoreover, current ATR methods mainly focus on learning a global-level\nrepresentation, missing out on intricate details to capture audio occurrences\nthat correspond to textual semantics. To bridge this gap, we introduce a\nDisentangled Cross-modal Representation (DCR) approach that disentangles\nhigh-dimensional features into compact latent factors to grasp fine-grained\naudio-text semantic correlations. Additionally, we develop a confidence-aware\n(CA) module to estimate the confidence of each latent factor pair and\nadaptively aggregate cross-modal latent factors to achieve local semantic\nalignment. Experiments show that our THA effectively boosts ATR performance,\nwith the DCR approach further contributing to consistent performance gains.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Audio-text Retrieval with Transformer-based Hierarchical Alignment and Disentangled Cross-modal Representation\",\"authors\":\"Yifei Xin, Zhihong Zhu, Xuxin Cheng, Xusheng Yang, Yuexian Zou\",\"doi\":\"arxiv-2409.09256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing audio-text retrieval (ATR) approaches typically rely on a\\nsingle-level interaction to associate audio and text, limiting their ability to\\nalign different modalities and leading to suboptimal matches. In this work, we\\npresent a novel ATR framework that leverages two-stream Transformers in\\nconjunction with a Hierarchical Alignment (THA) module to identify multi-level\\ncorrespondences of different Transformer blocks between audio and text.\\nMoreover, current ATR methods mainly focus on learning a global-level\\nrepresentation, missing out on intricate details to capture audio occurrences\\nthat correspond to textual semantics. To bridge this gap, we introduce a\\nDisentangled Cross-modal Representation (DCR) approach that disentangles\\nhigh-dimensional features into compact latent factors to grasp fine-grained\\naudio-text semantic correlations. Additionally, we develop a confidence-aware\\n(CA) module to estimate the confidence of each latent factor pair and\\nadaptively aggregate cross-modal latent factors to achieve local semantic\\nalignment. Experiments show that our THA effectively boosts ATR performance,\\nwith the DCR approach further contributing to consistent performance gains.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数现有的音频-文本检索(ATR)方法通常依赖于单级交互来关联音频和文本,这限制了它们对齐不同模态的能力,并导致次优匹配。在这项工作中,我们提出了一种新颖的 ATR 框架,该框架利用双流变换器与分层对齐(THA)模块相结合,来识别音频和文本之间不同变换器块的多层次对应关系。此外,当前的 ATR 方法主要侧重于学习全局级别的表述,而忽略了捕捉音频出现与文本语义对应的复杂细节。为了弥补这一缺陷,我们引入了一种将高维特征分解为紧凑潜在因子的 "分解跨模态表示"(Disentangled Cross-modal Representation,DCR)方法,以把握细粒度的音频-文本语义关联。此外,我们还开发了一个置信度感知(CA)模块,用于估计每个潜在因子对的置信度,并自适应地聚合跨模态潜在因子,以实现局部语义对齐。实验表明,我们的 THA 有效地提高了 ATR 性能,而 DCR 方法则进一步促进了性能的持续提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio-text Retrieval with Transformer-based Hierarchical Alignment and Disentangled Cross-modal Representation
Most existing audio-text retrieval (ATR) approaches typically rely on a single-level interaction to associate audio and text, limiting their ability to align different modalities and leading to suboptimal matches. In this work, we present a novel ATR framework that leverages two-stream Transformers in conjunction with a Hierarchical Alignment (THA) module to identify multi-level correspondences of different Transformer blocks between audio and text. Moreover, current ATR methods mainly focus on learning a global-level representation, missing out on intricate details to capture audio occurrences that correspond to textual semantics. To bridge this gap, we introduce a Disentangled Cross-modal Representation (DCR) approach that disentangles high-dimensional features into compact latent factors to grasp fine-grained audio-text semantic correlations. Additionally, we develop a confidence-aware (CA) module to estimate the confidence of each latent factor pair and adaptively aggregate cross-modal latent factors to achieve local semantic alignment. Experiments show that our THA effectively boosts ATR performance, with the DCR approach further contributing to consistent performance gains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1