{"title":"基于特征融合和自适应时空级联网络的机器人地面介质分类算法","authors":"Changqun Feng, Keming Dong, Xinyu Ou","doi":"10.1007/s11063-024-11679-w","DOIUrl":null,"url":null,"abstract":"<p>With technological advancements and scientific progress, mobile robots have found widespread applications across various fields. To enable robots to perform tasks safely and effectively in diverse and unknown environments, this paper proposes a ground medium classification algorithm for robots based on feature fusion and an adaptive spatio-temporal cascade network. Specifically, the original directional features in the dataset are first transformed into quaternion form. Then, spatio-temporal forward and reverse neighbors are identified using KD trees, and their connection strengths are evaluated via a kernel density estimation algorithm to determine the final set of neighbors. Subsequently, based on the connection strengths determined in the previous step, we perform noise reduction on the features using discrete wavelet transform. The noise-reduced features are then weighted and fused to generate a new feature representation.After feature fusion, the Adaptive Dynamic Convolutional Neural Network (ADC) proposed in this paper is cascaded with the Long Short-Term Memory (LSTM) network to further extract hybrid spatio-temporal feature information from the dataset, culminating in the final terrain classification. Experiments on the terrain type classification dataset demonstrate that our method achieves an average accuracy of 97.46% and an AUC of 99.80%, significantly outperforming other commonly used algorithms in the field. Furthermore, the effectiveness of each module in the proposed method is further demonstrated through ablation experiments.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"31 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks\",\"authors\":\"Changqun Feng, Keming Dong, Xinyu Ou\",\"doi\":\"10.1007/s11063-024-11679-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With technological advancements and scientific progress, mobile robots have found widespread applications across various fields. To enable robots to perform tasks safely and effectively in diverse and unknown environments, this paper proposes a ground medium classification algorithm for robots based on feature fusion and an adaptive spatio-temporal cascade network. Specifically, the original directional features in the dataset are first transformed into quaternion form. Then, spatio-temporal forward and reverse neighbors are identified using KD trees, and their connection strengths are evaluated via a kernel density estimation algorithm to determine the final set of neighbors. Subsequently, based on the connection strengths determined in the previous step, we perform noise reduction on the features using discrete wavelet transform. The noise-reduced features are then weighted and fused to generate a new feature representation.After feature fusion, the Adaptive Dynamic Convolutional Neural Network (ADC) proposed in this paper is cascaded with the Long Short-Term Memory (LSTM) network to further extract hybrid spatio-temporal feature information from the dataset, culminating in the final terrain classification. Experiments on the terrain type classification dataset demonstrate that our method achieves an average accuracy of 97.46% and an AUC of 99.80%, significantly outperforming other commonly used algorithms in the field. Furthermore, the effectiveness of each module in the proposed method is further demonstrated through ablation experiments.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11679-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11679-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks
With technological advancements and scientific progress, mobile robots have found widespread applications across various fields. To enable robots to perform tasks safely and effectively in diverse and unknown environments, this paper proposes a ground medium classification algorithm for robots based on feature fusion and an adaptive spatio-temporal cascade network. Specifically, the original directional features in the dataset are first transformed into quaternion form. Then, spatio-temporal forward and reverse neighbors are identified using KD trees, and their connection strengths are evaluated via a kernel density estimation algorithm to determine the final set of neighbors. Subsequently, based on the connection strengths determined in the previous step, we perform noise reduction on the features using discrete wavelet transform. The noise-reduced features are then weighted and fused to generate a new feature representation.After feature fusion, the Adaptive Dynamic Convolutional Neural Network (ADC) proposed in this paper is cascaded with the Long Short-Term Memory (LSTM) network to further extract hybrid spatio-temporal feature information from the dataset, culminating in the final terrain classification. Experiments on the terrain type classification dataset demonstrate that our method achieves an average accuracy of 97.46% and an AUC of 99.80%, significantly outperforming other commonly used algorithms in the field. Furthermore, the effectiveness of each module in the proposed method is further demonstrated through ablation experiments.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters