{"title":"构建具有优化离子和电子电导率的纳米 ZnV2O4/N 掺杂多孔碳复合材料,作为锌离子电容器的竞争性阴极","authors":"Hao Jiang, Peng Yue, Qinchao Gao, Shujia Zhang, Mushen Gao, Jinlong Wang, Yang Liu, Linrui Hou, Changzhou Yuan","doi":"10.1002/cnma.202400445","DOIUrl":null,"url":null,"abstract":"Zinc-ion capacitors (ZICs) have great potential for energy storage applications due to high safety, environmental friendliness, low cost, and high energy density. However, challenges such as poor ion diffusion kinetics and the low conductivity of cathode materials still need to be addressed. Nano ZnV2O4/nitrogen-doped porous carbon (ZVO/N-PC) composites are efficiently synthesized via a simple annealing process. Highly crystalline ZVO nanoparticles are in-situ grown on the three-dimensional N-PC surface by precisely tuning the ratio of the vanadium source, achieving a dual enhancement in electronic and ionic conductivities. Benefiting from the nanoengineering build-up, the optimized ZVO-0.6/N-PC anode exhibits impressive rate performance (405.9/308.8 mAh g–1 at 0.2/5.0 A g–1) and cycling capability (0.0029% capacity drop per cycle at 5.0 A g–1 after 5,800 cycles). Using nitrogen-doped porous activated carbon (N-PAC) as the anode and ZVO-0.6/N-PC as the cathode, the assembled ZICs deliver a high energy density of 27.5 Wh kg–1 at a power density of 450.0 W kg–1. After 10,000 cycles at 1.0 A g–1, the capacity retention rate remains as 72.8%, demonstrating excellent cycling stability. This highlights the promising application of nano ZVO/N-PC composites towards ZICs as competitive cathodes.","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Nano ZnV2O4/N-Doped Porous Carbon Composites with Optimized Ionic and Electronic Conductivities as Competitive Cathodes toward Zinc-Ion Capacitors\",\"authors\":\"Hao Jiang, Peng Yue, Qinchao Gao, Shujia Zhang, Mushen Gao, Jinlong Wang, Yang Liu, Linrui Hou, Changzhou Yuan\",\"doi\":\"10.1002/cnma.202400445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc-ion capacitors (ZICs) have great potential for energy storage applications due to high safety, environmental friendliness, low cost, and high energy density. However, challenges such as poor ion diffusion kinetics and the low conductivity of cathode materials still need to be addressed. Nano ZnV2O4/nitrogen-doped porous carbon (ZVO/N-PC) composites are efficiently synthesized via a simple annealing process. Highly crystalline ZVO nanoparticles are in-situ grown on the three-dimensional N-PC surface by precisely tuning the ratio of the vanadium source, achieving a dual enhancement in electronic and ionic conductivities. Benefiting from the nanoengineering build-up, the optimized ZVO-0.6/N-PC anode exhibits impressive rate performance (405.9/308.8 mAh g–1 at 0.2/5.0 A g–1) and cycling capability (0.0029% capacity drop per cycle at 5.0 A g–1 after 5,800 cycles). Using nitrogen-doped porous activated carbon (N-PAC) as the anode and ZVO-0.6/N-PC as the cathode, the assembled ZICs deliver a high energy density of 27.5 Wh kg–1 at a power density of 450.0 W kg–1. After 10,000 cycles at 1.0 A g–1, the capacity retention rate remains as 72.8%, demonstrating excellent cycling stability. This highlights the promising application of nano ZVO/N-PC composites towards ZICs as competitive cathodes.\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cnma.202400445\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cnma.202400445","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
锌离子电容器(ZIC)具有高安全性、环保性、低成本和高能量密度等特点,在储能应用中具有巨大潜力。然而,离子扩散动力学差和阴极材料电导率低等挑战仍有待解决。纳米 ZnV2O4/掺氮多孔碳(ZVO/N-PC)复合材料是通过简单的退火工艺高效合成的。通过精确调节钒源的比例,在三维 N-PC 表面原位生长出高结晶 ZVO 纳米颗粒,实现了电子和离子导电性的双重增强。得益于纳米工程的积累,优化后的 ZVO-0.6/N-PC 阳极表现出令人印象深刻的速率性能(0.2/5.0 A g-1 时分别为 405.9/308.8 mAh g-1)和循环能力(5.0 A g-1 时经过 5,800 个循环后每个循环的容量下降 0.0029%)。使用掺氮多孔活性炭(N-PAC)作为阳极,ZVO-0.6/N-PC 作为阴极,组装后的 ZIC 在 450.0 W kg-1 的功率密度下可提供 27.5 Wh kg-1 的高能量密度。在 1.0 A g-1 的条件下循环 10,000 次后,容量保持率仍为 72.8%,显示出卓越的循环稳定性。这凸显了纳米 ZVO/N-PC 复合材料作为有竞争力阴极的 ZIC 的应用前景。
Construction of Nano ZnV2O4/N-Doped Porous Carbon Composites with Optimized Ionic and Electronic Conductivities as Competitive Cathodes toward Zinc-Ion Capacitors
Zinc-ion capacitors (ZICs) have great potential for energy storage applications due to high safety, environmental friendliness, low cost, and high energy density. However, challenges such as poor ion diffusion kinetics and the low conductivity of cathode materials still need to be addressed. Nano ZnV2O4/nitrogen-doped porous carbon (ZVO/N-PC) composites are efficiently synthesized via a simple annealing process. Highly crystalline ZVO nanoparticles are in-situ grown on the three-dimensional N-PC surface by precisely tuning the ratio of the vanadium source, achieving a dual enhancement in electronic and ionic conductivities. Benefiting from the nanoengineering build-up, the optimized ZVO-0.6/N-PC anode exhibits impressive rate performance (405.9/308.8 mAh g–1 at 0.2/5.0 A g–1) and cycling capability (0.0029% capacity drop per cycle at 5.0 A g–1 after 5,800 cycles). Using nitrogen-doped porous activated carbon (N-PAC) as the anode and ZVO-0.6/N-PC as the cathode, the assembled ZICs deliver a high energy density of 27.5 Wh kg–1 at a power density of 450.0 W kg–1. After 10,000 cycles at 1.0 A g–1, the capacity retention rate remains as 72.8%, demonstrating excellent cycling stability. This highlights the promising application of nano ZVO/N-PC composites towards ZICs as competitive cathodes.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.