IGFBP2 通过抑制表皮生长因子受体-STAT3 通路成为防止肝脂肪变性的内源性保护因子

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Molecular Metabolism Pub Date : 2024-09-17 DOI:10.1016/j.molmet.2024.102026
Tianyu Zhai , Liang Cai , Xi Jia , Mingfeng Xia , Hua Bian , Xin Gao , Chenling Pan , Xiaoying Li , Pu Xia
{"title":"IGFBP2 通过抑制表皮生长因子受体-STAT3 通路成为防止肝脂肪变性的内源性保护因子","authors":"Tianyu Zhai ,&nbsp;Liang Cai ,&nbsp;Xi Jia ,&nbsp;Mingfeng Xia ,&nbsp;Hua Bian ,&nbsp;Xin Gao ,&nbsp;Chenling Pan ,&nbsp;Xiaoying Li ,&nbsp;Pu Xia","doi":"10.1016/j.molmet.2024.102026","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Non-alcoholic fatty liver disease (NAFLD) is deemed as an emerging global epidemic, whereas the underlying pathogenic mechanism remains to be clarified. We aimed to systemically analyze all the NAFLD-related gene expression datasets from published human-based studies, by which exploring potential key factors and mechanisms accounting for the pathogenesis of NAFLD.</div></div><div><h3>Methods</h3><div>Robust rank aggregation (RRA) method was used to integrate NAFLD-related gene expression datasets. For fatty liver study, adeno-associated virus (AAV) delivery and genetic knockout mice were used to create IGFBP2 (Insulin-like growth factor binding protein 2) gain- or loss-of function models. Western blot, Co-immunoprecipitation (Co-IP), immunofluorescent (IF) staining, luciferase assay, molecular docking simulation were performed to reveal the IGFBP2-EGFR-STAT3 axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining.</div></div><div><h3>Results</h3><div>By using RRA method, the present study identified IGFBP2 being the most significantly down-regulated gene in all NAFLD subjects. The decreased IGFBP2 expression was further confirmed in the liver tissues from patients and animal models of NAFLD. IGFBP2 deficiency aggravated hepatic steatosis and NASH phenotypes and promoted lipogenic gene expression both <em>in vivo</em> and <em>in vitro</em>. Mechanistically, IGFBP2 directly binds to and regulates EGFR, whereas blockage of the IGFBP2-EGFR complex by knockdown of IGFBP2 resulted in the EGFR-STAT3 pathway activation, which in turn promoted the promoter activity of <em>Srebf1</em>. By using molecular docking simulation and protein-protein interaction analysis, the sequence of 233-257 amino acids in IGFBP2 was characterized as a key motif responding for its specific binding to EGFR and the protective effect against hepatic steatosis.</div></div><div><h3>Conclusions</h3><div>The current study has, for the first time, identified IGFBP2 as a novel protector against hepatosteatosis. The protective effect is mediated by its specific interaction with EGFR and thereby suppressing the EGFR-STAT3 pathway. Therefore, pharmaceutically targeting the IGFBP2-EGFR-STAT3 axis may provide a theoretical basis for for the treatment of NAFLD/NASH and the associated diseases.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"89 ","pages":"Article 102026"},"PeriodicalIF":7.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IGFBP2 functions as an endogenous protector against hepatic steatosis via suppression of the EGFR-STAT3 pathway\",\"authors\":\"Tianyu Zhai ,&nbsp;Liang Cai ,&nbsp;Xi Jia ,&nbsp;Mingfeng Xia ,&nbsp;Hua Bian ,&nbsp;Xin Gao ,&nbsp;Chenling Pan ,&nbsp;Xiaoying Li ,&nbsp;Pu Xia\",\"doi\":\"10.1016/j.molmet.2024.102026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Non-alcoholic fatty liver disease (NAFLD) is deemed as an emerging global epidemic, whereas the underlying pathogenic mechanism remains to be clarified. We aimed to systemically analyze all the NAFLD-related gene expression datasets from published human-based studies, by which exploring potential key factors and mechanisms accounting for the pathogenesis of NAFLD.</div></div><div><h3>Methods</h3><div>Robust rank aggregation (RRA) method was used to integrate NAFLD-related gene expression datasets. For fatty liver study, adeno-associated virus (AAV) delivery and genetic knockout mice were used to create IGFBP2 (Insulin-like growth factor binding protein 2) gain- or loss-of function models. Western blot, Co-immunoprecipitation (Co-IP), immunofluorescent (IF) staining, luciferase assay, molecular docking simulation were performed to reveal the IGFBP2-EGFR-STAT3 axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining.</div></div><div><h3>Results</h3><div>By using RRA method, the present study identified IGFBP2 being the most significantly down-regulated gene in all NAFLD subjects. The decreased IGFBP2 expression was further confirmed in the liver tissues from patients and animal models of NAFLD. IGFBP2 deficiency aggravated hepatic steatosis and NASH phenotypes and promoted lipogenic gene expression both <em>in vivo</em> and <em>in vitro</em>. Mechanistically, IGFBP2 directly binds to and regulates EGFR, whereas blockage of the IGFBP2-EGFR complex by knockdown of IGFBP2 resulted in the EGFR-STAT3 pathway activation, which in turn promoted the promoter activity of <em>Srebf1</em>. By using molecular docking simulation and protein-protein interaction analysis, the sequence of 233-257 amino acids in IGFBP2 was characterized as a key motif responding for its specific binding to EGFR and the protective effect against hepatic steatosis.</div></div><div><h3>Conclusions</h3><div>The current study has, for the first time, identified IGFBP2 as a novel protector against hepatosteatosis. The protective effect is mediated by its specific interaction with EGFR and thereby suppressing the EGFR-STAT3 pathway. Therefore, pharmaceutically targeting the IGFBP2-EGFR-STAT3 axis may provide a theoretical basis for for the treatment of NAFLD/NASH and the associated diseases.</div></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"89 \",\"pages\":\"Article 102026\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001571\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001571","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

非酒精性脂肪肝(NAFLD)被认为是一种新出现的全球性流行病,但其潜在的致病机制仍有待明确。我们的目的是系统分析已发表的基于人类研究的所有非酒精性脂肪肝相关基因表达数据集,从而探索非酒精性脂肪肝发病机制的潜在关键因素和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IGFBP2 functions as an endogenous protector against hepatic steatosis via suppression of the EGFR-STAT3 pathway

Objective

Non-alcoholic fatty liver disease (NAFLD) is deemed as an emerging global epidemic, whereas the underlying pathogenic mechanism remains to be clarified. We aimed to systemically analyze all the NAFLD-related gene expression datasets from published human-based studies, by which exploring potential key factors and mechanisms accounting for the pathogenesis of NAFLD.

Methods

Robust rank aggregation (RRA) method was used to integrate NAFLD-related gene expression datasets. For fatty liver study, adeno-associated virus (AAV) delivery and genetic knockout mice were used to create IGFBP2 (Insulin-like growth factor binding protein 2) gain- or loss-of function models. Western blot, Co-immunoprecipitation (Co-IP), immunofluorescent (IF) staining, luciferase assay, molecular docking simulation were performed to reveal the IGFBP2-EGFR-STAT3 axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining.

Results

By using RRA method, the present study identified IGFBP2 being the most significantly down-regulated gene in all NAFLD subjects. The decreased IGFBP2 expression was further confirmed in the liver tissues from patients and animal models of NAFLD. IGFBP2 deficiency aggravated hepatic steatosis and NASH phenotypes and promoted lipogenic gene expression both in vivo and in vitro. Mechanistically, IGFBP2 directly binds to and regulates EGFR, whereas blockage of the IGFBP2-EGFR complex by knockdown of IGFBP2 resulted in the EGFR-STAT3 pathway activation, which in turn promoted the promoter activity of Srebf1. By using molecular docking simulation and protein-protein interaction analysis, the sequence of 233-257 amino acids in IGFBP2 was characterized as a key motif responding for its specific binding to EGFR and the protective effect against hepatic steatosis.

Conclusions

The current study has, for the first time, identified IGFBP2 as a novel protector against hepatosteatosis. The protective effect is mediated by its specific interaction with EGFR and thereby suppressing the EGFR-STAT3 pathway. Therefore, pharmaceutically targeting the IGFBP2-EGFR-STAT3 axis may provide a theoretical basis for for the treatment of NAFLD/NASH and the associated diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
期刊最新文献
AMPK regulates the maintenance and remodelling of the neuromuscular junction. FGF21 acts in the brain to drive macronutrient-specific changes in behavioral motivation and brain reward signaling. The immune checkpoint molecule B7-H4 regulates β-cell mass and insulin secretion by modulating cholesterol metabolism through Stat5 signalling. Senescent Cell Depletion Alleviates Obesity-related Metabolic and Cardiac Disorders. Incretin-responsive human pancreatic adipose tissue organoids: A functional model for fatty pancreas research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1