Marco Antonio Lacerda-Abreu, Bruna dos Santos Mendonça, Gabriela Nestal de Moraes, José Roberto Meyer-Fernandes
{"title":"腔 A MCF-7 乳腺癌细胞中由酸性异磷酸酶驱动的异核苷酸酶活性","authors":"Marco Antonio Lacerda-Abreu, Bruna dos Santos Mendonça, Gabriela Nestal de Moraes, José Roberto Meyer-Fernandes","doi":"10.1002/cbin.12237","DOIUrl":null,"url":null,"abstract":"<p>Ectophosphatases catalyse the hydrolysis of phosphorylated molecules, such as phospho-amino acids, in the extracellular environment. Nevertheless, the hydrolysis of nucleotides in the extracellular environment is typically catalysed by ectonucleotidases. Studies have shown that acid ectophosphatase, or transmembrane-prostatic acid phosphatase (TM-PAP), a membrane-bound splice variant of prostatic acid phosphatase, has ecto-5′-nucleotidase activity. Furthermore, it was demonstrated that ectophosphatase cannot hydrolyse ATP, ADP, or AMP in triple-negative breast cancer cells. In contrast to previous findings in MDA-MB-231 cells, the ectophosphatase studied in the present work displayed a remarkable capacity to hydrolyse AMP in luminal A breast cancer cells (MCF-7). We showed that AMP dose-dependently inhibited <i>p</i>-nitrophenylphosphate (<i>p</i>-NPP) hydrolysis. The <i>p</i>-NPP and AMP hydrolysis showed similar biochemical behaviours, such as increased hydrolysis under acidic conditions and comparable inhibition by NiCl<sub>2</sub>, ammonium molybdate, and sodium orthovanadate. In addition, this ectophosphatase with ectonucleotidase activity was essential for the release of adenosine and inorganic phosphate from phosphorylated molecules available in the extracellular microenvironment. This is the first study to show that prostatic acid phosphatase on the membrane surface of breast cancer cells (MCF-7) is correlated with cell adhesion and migration.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1637-1648"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ectonucleotidase activity driven by acid ectophosphatase in luminal A MCF-7 breast cancer cells\",\"authors\":\"Marco Antonio Lacerda-Abreu, Bruna dos Santos Mendonça, Gabriela Nestal de Moraes, José Roberto Meyer-Fernandes\",\"doi\":\"10.1002/cbin.12237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ectophosphatases catalyse the hydrolysis of phosphorylated molecules, such as phospho-amino acids, in the extracellular environment. Nevertheless, the hydrolysis of nucleotides in the extracellular environment is typically catalysed by ectonucleotidases. Studies have shown that acid ectophosphatase, or transmembrane-prostatic acid phosphatase (TM-PAP), a membrane-bound splice variant of prostatic acid phosphatase, has ecto-5′-nucleotidase activity. Furthermore, it was demonstrated that ectophosphatase cannot hydrolyse ATP, ADP, or AMP in triple-negative breast cancer cells. In contrast to previous findings in MDA-MB-231 cells, the ectophosphatase studied in the present work displayed a remarkable capacity to hydrolyse AMP in luminal A breast cancer cells (MCF-7). We showed that AMP dose-dependently inhibited <i>p</i>-nitrophenylphosphate (<i>p</i>-NPP) hydrolysis. The <i>p</i>-NPP and AMP hydrolysis showed similar biochemical behaviours, such as increased hydrolysis under acidic conditions and comparable inhibition by NiCl<sub>2</sub>, ammonium molybdate, and sodium orthovanadate. In addition, this ectophosphatase with ectonucleotidase activity was essential for the release of adenosine and inorganic phosphate from phosphorylated molecules available in the extracellular microenvironment. This is the first study to show that prostatic acid phosphatase on the membrane surface of breast cancer cells (MCF-7) is correlated with cell adhesion and migration.</p>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\"48 11\",\"pages\":\"1637-1648\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12237\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12237","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ectonucleotidase activity driven by acid ectophosphatase in luminal A MCF-7 breast cancer cells
Ectophosphatases catalyse the hydrolysis of phosphorylated molecules, such as phospho-amino acids, in the extracellular environment. Nevertheless, the hydrolysis of nucleotides in the extracellular environment is typically catalysed by ectonucleotidases. Studies have shown that acid ectophosphatase, or transmembrane-prostatic acid phosphatase (TM-PAP), a membrane-bound splice variant of prostatic acid phosphatase, has ecto-5′-nucleotidase activity. Furthermore, it was demonstrated that ectophosphatase cannot hydrolyse ATP, ADP, or AMP in triple-negative breast cancer cells. In contrast to previous findings in MDA-MB-231 cells, the ectophosphatase studied in the present work displayed a remarkable capacity to hydrolyse AMP in luminal A breast cancer cells (MCF-7). We showed that AMP dose-dependently inhibited p-nitrophenylphosphate (p-NPP) hydrolysis. The p-NPP and AMP hydrolysis showed similar biochemical behaviours, such as increased hydrolysis under acidic conditions and comparable inhibition by NiCl2, ammonium molybdate, and sodium orthovanadate. In addition, this ectophosphatase with ectonucleotidase activity was essential for the release of adenosine and inorganic phosphate from phosphorylated molecules available in the extracellular microenvironment. This is the first study to show that prostatic acid phosphatase on the membrane surface of breast cancer cells (MCF-7) is correlated with cell adhesion and migration.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.