对 TRPC5 离子通道进行非共价自旋标记可实现蛋白质-配体相互作用的 EPR 研究

Robin S., Bon, Aidan V., Johnson, Sebastian Alin, Porav, Kasia L. R., Hammond, Anokhi, Shah, Joshua L., Wort, Yue, Ma, Hassane, El Mkami, Christopher M., Pask, Stephen P., Muench, Andrew J., Wilson, Christos, Pliotas
{"title":"对 TRPC5 离子通道进行非共价自旋标记可实现蛋白质-配体相互作用的 EPR 研究","authors":"Robin S., Bon, Aidan V., Johnson, Sebastian Alin, Porav, Kasia L. R., Hammond, Anokhi, Shah, Joshua L., Wort, Yue, Ma, Hassane, El Mkami, Christopher M., Pask, Stephen P., Muench, Andrew J., Wilson, Christos, Pliotas","doi":"10.26434/chemrxiv-2024-t3bp9","DOIUrl":null,"url":null,"abstract":"Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for the study of proteins in solution and under native conditions. Paramagnetic spin centres are usually introduced by site-directed spin labelling (SDSL) of engineered cysteine residues. However, for many (membrane) protein classes, cysteine engineering is not possible without affecting their structural and functional integrity. Here, we report the development of xanthine-based aminoxyl spin probes that allow non-covalent spin labelling of human TRPC5 ion channels. The compounds retained high potency as TRPC5 modulators and allowed assessment of ligand interaction and inter-ligand distances by continuous wave EPR (CW EPR) and double electron-electron resonance (DEER) spectroscopy. The results from EPR experiments were supported by high-resolution cryo-electron microscopy (cryoEM) structures of the TRPC5:spin probe complexes. This work shows that non-covalent, ligand-based spin labelling can be used for EPR studies of large, cysteine-rich membrane proteins and their complexes.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-covalent spin labelling of TRPC5 ion channels enables EPR studies of protein-ligand interactions\",\"authors\":\"Robin S., Bon, Aidan V., Johnson, Sebastian Alin, Porav, Kasia L. R., Hammond, Anokhi, Shah, Joshua L., Wort, Yue, Ma, Hassane, El Mkami, Christopher M., Pask, Stephen P., Muench, Andrew J., Wilson, Christos, Pliotas\",\"doi\":\"10.26434/chemrxiv-2024-t3bp9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for the study of proteins in solution and under native conditions. Paramagnetic spin centres are usually introduced by site-directed spin labelling (SDSL) of engineered cysteine residues. However, for many (membrane) protein classes, cysteine engineering is not possible without affecting their structural and functional integrity. Here, we report the development of xanthine-based aminoxyl spin probes that allow non-covalent spin labelling of human TRPC5 ion channels. The compounds retained high potency as TRPC5 modulators and allowed assessment of ligand interaction and inter-ligand distances by continuous wave EPR (CW EPR) and double electron-electron resonance (DEER) spectroscopy. The results from EPR experiments were supported by high-resolution cryo-electron microscopy (cryoEM) structures of the TRPC5:spin probe complexes. This work shows that non-covalent, ligand-based spin labelling can be used for EPR studies of large, cysteine-rich membrane proteins and their complexes.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-t3bp9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-t3bp9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子顺磁共振(EPR)光谱是研究溶液中和原生条件下蛋白质的一种强大技术。顺磁自旋中心通常是通过对工程半胱氨酸残基进行定点自旋标记(SDSL)而引入的。然而,对于许多(膜)蛋白质类别来说,半胱氨酸工程不可能不影响其结构和功能的完整性。在此,我们报告了基于黄嘌呤的氨基己基自旋探针的开发情况,这种探针可以对人类 TRPC5 离子通道进行非共价自旋标记。这些化合物作为 TRPC5 调制剂保持了很高的效力,并可通过连续波 EPR(CW EPR)和双电子电子共振(DEER)光谱评估配体相互作用和配体间距离。TRPC5:自旋探针复合物的高分辨率冷冻电镜(cryoEM)结构为 EPR 实验结果提供了支持。这项工作表明,基于配体的非共价自旋标记可用于富含半胱氨酸的大型膜蛋白及其复合物的 EPR 研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-covalent spin labelling of TRPC5 ion channels enables EPR studies of protein-ligand interactions
Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for the study of proteins in solution and under native conditions. Paramagnetic spin centres are usually introduced by site-directed spin labelling (SDSL) of engineered cysteine residues. However, for many (membrane) protein classes, cysteine engineering is not possible without affecting their structural and functional integrity. Here, we report the development of xanthine-based aminoxyl spin probes that allow non-covalent spin labelling of human TRPC5 ion channels. The compounds retained high potency as TRPC5 modulators and allowed assessment of ligand interaction and inter-ligand distances by continuous wave EPR (CW EPR) and double electron-electron resonance (DEER) spectroscopy. The results from EPR experiments were supported by high-resolution cryo-electron microscopy (cryoEM) structures of the TRPC5:spin probe complexes. This work shows that non-covalent, ligand-based spin labelling can be used for EPR studies of large, cysteine-rich membrane proteins and their complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Hybrid synthesis of AMFC-derived amides using supported gold nanoparticles and acyl-coenzyme A ligases Non-covalent spin labelling of TRPC5 ion channels enables EPR studies of protein-ligand interactions An Efficient RI-MP2 Algorithm for Distributed Many-GPU Architectures Unusual Confinement-Induced Basicity and Proton-Mediated CH Activity of an Adipic Acid-Ammonium Cluster
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1