利用循环推理机解卷积 X 射线星系团光谱

Carter Rhea, Julie Hlavacek-Larrondo, Alexandre Adam, Ralph Kraft, Akos Bogdan, Laurence Perreault-Levasseur, Marine Prunier
{"title":"利用循环推理机解卷积 X 射线星系团光谱","authors":"Carter Rhea, Julie Hlavacek-Larrondo, Alexandre Adam, Ralph Kraft, Akos Bogdan, Laurence Perreault-Levasseur, Marine Prunier","doi":"arxiv-2409.10711","DOIUrl":null,"url":null,"abstract":"Recent advances in machine learning algorithms have unlocked new insights in\nobservational astronomy by allowing astronomers to probe new frontiers. In this\narticle, we present a methodology to disentangle the intrinsic X-ray spectrum\nof galaxy clusters from the instrumental response function. Employing\nstate-of-the-art modeling software and data mining techniques of the Chandra\ndata archive, we construct a set of 100,000 mock Chandra spectra. We train a\nrecurrent inference machine (RIM) to take in the instrumental response and mock\nobservation and output the intrinsic X-ray spectrum. The RIM can recover the\nmock intrinsic spectrum below the 1-$\\sigma$ error threshold; moreover, the RIM\nreconstruction of the mock observations are indistinguishable from the\nobservations themselves. To further test the algorithm, we deconvolve extracted\nspectra from the central regions of the galaxy group NGC 1550, known to have a\nrich X-ray spectrum, and the massive galaxy clusters Abell 1795. Despite the\nRIM reconstructions consistently remaining below the 1-$\\sigma$ noise level,\nthe recovered intrinsic spectra did not align with modeled expectations. This\ndiscrepancy is likely attributable to the RIM's method of implicitly encoding\nprior information within the neural network. This approach holds promise for\nunlocking new possibilities in accurate spectral reconstructions and advancing\nour understanding of complex X-ray cosmic phenomena.","PeriodicalId":501187,"journal":{"name":"arXiv - PHYS - Astrophysics of Galaxies","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deconvolving X-ray Galaxy Cluster Spectra Using a Recurrent Inference Machine\",\"authors\":\"Carter Rhea, Julie Hlavacek-Larrondo, Alexandre Adam, Ralph Kraft, Akos Bogdan, Laurence Perreault-Levasseur, Marine Prunier\",\"doi\":\"arxiv-2409.10711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in machine learning algorithms have unlocked new insights in\\nobservational astronomy by allowing astronomers to probe new frontiers. In this\\narticle, we present a methodology to disentangle the intrinsic X-ray spectrum\\nof galaxy clusters from the instrumental response function. Employing\\nstate-of-the-art modeling software and data mining techniques of the Chandra\\ndata archive, we construct a set of 100,000 mock Chandra spectra. We train a\\nrecurrent inference machine (RIM) to take in the instrumental response and mock\\nobservation and output the intrinsic X-ray spectrum. The RIM can recover the\\nmock intrinsic spectrum below the 1-$\\\\sigma$ error threshold; moreover, the RIM\\nreconstruction of the mock observations are indistinguishable from the\\nobservations themselves. To further test the algorithm, we deconvolve extracted\\nspectra from the central regions of the galaxy group NGC 1550, known to have a\\nrich X-ray spectrum, and the massive galaxy clusters Abell 1795. Despite the\\nRIM reconstructions consistently remaining below the 1-$\\\\sigma$ noise level,\\nthe recovered intrinsic spectra did not align with modeled expectations. This\\ndiscrepancy is likely attributable to the RIM's method of implicitly encoding\\nprior information within the neural network. This approach holds promise for\\nunlocking new possibilities in accurate spectral reconstructions and advancing\\nour understanding of complex X-ray cosmic phenomena.\",\"PeriodicalId\":501187,\"journal\":{\"name\":\"arXiv - PHYS - Astrophysics of Galaxies\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习算法的最新进展使天文学家能够探索新的前沿领域,从而开启了观测天文学的新视野。在这篇文章中,我们介绍了一种将星系团的固有X射线光谱与仪器响应函数分离开来的方法。利用最先进的建模软件和钱德拉数据档案的数据挖掘技术,我们构建了一组 10 万个模拟钱德拉光谱。我们训练电流推理机(RIM),以接收仪器响应和模拟观测,并输出本征 X 射线光谱。推理机能够恢复低于 1-$\sigma$ 误差阈值的模拟本征光谱;此外,推理机重建的模拟观测结果与观测结果本身没有区别。为了进一步测试该算法,我们对从星系团 NGC 1550(已知有丰富的 X 射线光谱)和大质量星系团 Abell 1795 的中心区域提取的光谱进行了解卷积。尽管RIM重构始终保持在1-$\sigma$噪声水平以下,但恢复的本征光谱与模型预期并不一致。这种差异很可能归因于 RIM 在神经网络中隐含编码先前信息的方法。这种方法有望解锁精确光谱重建的新可能性,并推进我们对复杂 X 射线宇宙现象的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deconvolving X-ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
Recent advances in machine learning algorithms have unlocked new insights in observational astronomy by allowing astronomers to probe new frontiers. In this article, we present a methodology to disentangle the intrinsic X-ray spectrum of galaxy clusters from the instrumental response function. Employing state-of-the-art modeling software and data mining techniques of the Chandra data archive, we construct a set of 100,000 mock Chandra spectra. We train a recurrent inference machine (RIM) to take in the instrumental response and mock observation and output the intrinsic X-ray spectrum. The RIM can recover the mock intrinsic spectrum below the 1-$\sigma$ error threshold; moreover, the RIM reconstruction of the mock observations are indistinguishable from the observations themselves. To further test the algorithm, we deconvolve extracted spectra from the central regions of the galaxy group NGC 1550, known to have a rich X-ray spectrum, and the massive galaxy clusters Abell 1795. Despite the RIM reconstructions consistently remaining below the 1-$\sigma$ noise level, the recovered intrinsic spectra did not align with modeled expectations. This discrepancy is likely attributable to the RIM's method of implicitly encoding prior information within the neural network. This approach holds promise for unlocking new possibilities in accurate spectral reconstructions and advancing our understanding of complex X-ray cosmic phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The generation of a multi-phase medium in "Splash" bridge systems: Towards an understanding of star formation suppression in turbulent galaxy systems A new measurement of the Galactic $^{12}$C/$^{13}$C gradient from sensitive HCO$^+$ absorption observations Disruption of a massive molecular cloud by a supernova in the Galactic Centre: Initial results from the ACES project A New Superbubble Finding Algorithm: Description and Testing The VIRUS-dE Survey II: Cuspy and round halos in dwarf ellipticals -- A result of early assembly?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1