Carter Rhea, Julie Hlavacek-Larrondo, Alexandre Adam, Ralph Kraft, Akos Bogdan, Laurence Perreault-Levasseur, Marine Prunier
{"title":"利用循环推理机解卷积 X 射线星系团光谱","authors":"Carter Rhea, Julie Hlavacek-Larrondo, Alexandre Adam, Ralph Kraft, Akos Bogdan, Laurence Perreault-Levasseur, Marine Prunier","doi":"arxiv-2409.10711","DOIUrl":null,"url":null,"abstract":"Recent advances in machine learning algorithms have unlocked new insights in\nobservational astronomy by allowing astronomers to probe new frontiers. In this\narticle, we present a methodology to disentangle the intrinsic X-ray spectrum\nof galaxy clusters from the instrumental response function. Employing\nstate-of-the-art modeling software and data mining techniques of the Chandra\ndata archive, we construct a set of 100,000 mock Chandra spectra. We train a\nrecurrent inference machine (RIM) to take in the instrumental response and mock\nobservation and output the intrinsic X-ray spectrum. The RIM can recover the\nmock intrinsic spectrum below the 1-$\\sigma$ error threshold; moreover, the RIM\nreconstruction of the mock observations are indistinguishable from the\nobservations themselves. To further test the algorithm, we deconvolve extracted\nspectra from the central regions of the galaxy group NGC 1550, known to have a\nrich X-ray spectrum, and the massive galaxy clusters Abell 1795. Despite the\nRIM reconstructions consistently remaining below the 1-$\\sigma$ noise level,\nthe recovered intrinsic spectra did not align with modeled expectations. This\ndiscrepancy is likely attributable to the RIM's method of implicitly encoding\nprior information within the neural network. This approach holds promise for\nunlocking new possibilities in accurate spectral reconstructions and advancing\nour understanding of complex X-ray cosmic phenomena.","PeriodicalId":501187,"journal":{"name":"arXiv - PHYS - Astrophysics of Galaxies","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deconvolving X-ray Galaxy Cluster Spectra Using a Recurrent Inference Machine\",\"authors\":\"Carter Rhea, Julie Hlavacek-Larrondo, Alexandre Adam, Ralph Kraft, Akos Bogdan, Laurence Perreault-Levasseur, Marine Prunier\",\"doi\":\"arxiv-2409.10711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in machine learning algorithms have unlocked new insights in\\nobservational astronomy by allowing astronomers to probe new frontiers. In this\\narticle, we present a methodology to disentangle the intrinsic X-ray spectrum\\nof galaxy clusters from the instrumental response function. Employing\\nstate-of-the-art modeling software and data mining techniques of the Chandra\\ndata archive, we construct a set of 100,000 mock Chandra spectra. We train a\\nrecurrent inference machine (RIM) to take in the instrumental response and mock\\nobservation and output the intrinsic X-ray spectrum. The RIM can recover the\\nmock intrinsic spectrum below the 1-$\\\\sigma$ error threshold; moreover, the RIM\\nreconstruction of the mock observations are indistinguishable from the\\nobservations themselves. To further test the algorithm, we deconvolve extracted\\nspectra from the central regions of the galaxy group NGC 1550, known to have a\\nrich X-ray spectrum, and the massive galaxy clusters Abell 1795. Despite the\\nRIM reconstructions consistently remaining below the 1-$\\\\sigma$ noise level,\\nthe recovered intrinsic spectra did not align with modeled expectations. This\\ndiscrepancy is likely attributable to the RIM's method of implicitly encoding\\nprior information within the neural network. This approach holds promise for\\nunlocking new possibilities in accurate spectral reconstructions and advancing\\nour understanding of complex X-ray cosmic phenomena.\",\"PeriodicalId\":501187,\"journal\":{\"name\":\"arXiv - PHYS - Astrophysics of Galaxies\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
机器学习算法的最新进展使天文学家能够探索新的前沿领域,从而开启了观测天文学的新视野。在这篇文章中,我们介绍了一种将星系团的固有X射线光谱与仪器响应函数分离开来的方法。利用最先进的建模软件和钱德拉数据档案的数据挖掘技术,我们构建了一组 10 万个模拟钱德拉光谱。我们训练电流推理机(RIM),以接收仪器响应和模拟观测,并输出本征 X 射线光谱。推理机能够恢复低于 1-$\sigma$ 误差阈值的模拟本征光谱;此外,推理机重建的模拟观测结果与观测结果本身没有区别。为了进一步测试该算法,我们对从星系团 NGC 1550(已知有丰富的 X 射线光谱)和大质量星系团 Abell 1795 的中心区域提取的光谱进行了解卷积。尽管RIM重构始终保持在1-$\sigma$噪声水平以下,但恢复的本征光谱与模型预期并不一致。这种差异很可能归因于 RIM 在神经网络中隐含编码先前信息的方法。这种方法有望解锁精确光谱重建的新可能性,并推进我们对复杂 X 射线宇宙现象的理解。
Deconvolving X-ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
Recent advances in machine learning algorithms have unlocked new insights in
observational astronomy by allowing astronomers to probe new frontiers. In this
article, we present a methodology to disentangle the intrinsic X-ray spectrum
of galaxy clusters from the instrumental response function. Employing
state-of-the-art modeling software and data mining techniques of the Chandra
data archive, we construct a set of 100,000 mock Chandra spectra. We train a
recurrent inference machine (RIM) to take in the instrumental response and mock
observation and output the intrinsic X-ray spectrum. The RIM can recover the
mock intrinsic spectrum below the 1-$\sigma$ error threshold; moreover, the RIM
reconstruction of the mock observations are indistinguishable from the
observations themselves. To further test the algorithm, we deconvolve extracted
spectra from the central regions of the galaxy group NGC 1550, known to have a
rich X-ray spectrum, and the massive galaxy clusters Abell 1795. Despite the
RIM reconstructions consistently remaining below the 1-$\sigma$ noise level,
the recovered intrinsic spectra did not align with modeled expectations. This
discrepancy is likely attributable to the RIM's method of implicitly encoding
prior information within the neural network. This approach holds promise for
unlocking new possibilities in accurate spectral reconstructions and advancing
our understanding of complex X-ray cosmic phenomena.