通过随机积分在高维异序中进行线性假设检验

Mingxiang Cao, Hongwei Zhang, Kai Xu, Daojiang He
{"title":"通过随机积分在高维异序中进行线性假设检验","authors":"Mingxiang Cao, Hongwei Zhang, Kai Xu, Daojiang He","doi":"arxiv-2409.12066","DOIUrl":null,"url":null,"abstract":"In this paper, for the problem of heteroskedastic general linear hypothesis\ntesting (GLHT) in high-dimensional settings, we propose a random integration\nmethod based on the reference L2-norm to deal with such problems. The\nasymptotic properties of the test statistic can be obtained under the null\nhypothesis when the relationship between data dimensions and sample size is not\nspecified. The results show that it is more advisable to approximate the null\ndistribution of the test using the distribution of the chi-square type mixture,\nand it is shown through some numerical simulations and real data analysis that\nour proposed test is powerful.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear hypothesis testing in high-dimensional heteroscedastics via random integration\",\"authors\":\"Mingxiang Cao, Hongwei Zhang, Kai Xu, Daojiang He\",\"doi\":\"arxiv-2409.12066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for the problem of heteroskedastic general linear hypothesis\\ntesting (GLHT) in high-dimensional settings, we propose a random integration\\nmethod based on the reference L2-norm to deal with such problems. The\\nasymptotic properties of the test statistic can be obtained under the null\\nhypothesis when the relationship between data dimensions and sample size is not\\nspecified. The results show that it is more advisable to approximate the null\\ndistribution of the test using the distribution of the chi-square type mixture,\\nand it is shown through some numerical simulations and real data analysis that\\nour proposed test is powerful.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对高维环境下的异方差一般线性假设检验(GLHT)问题,提出了一种基于参考 L2 正态的随机积分法来处理此类问题。当数据维度和样本量之间的关系未被指定时,可以在零假设下获得检验统计量的渐近性质。结果表明,使用秩方类型混合物的分布来近似检验的无分布是更可取的,并通过一些数值模拟和实际数据分析证明了我们提出的检验是强大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear hypothesis testing in high-dimensional heteroscedastics via random integration
In this paper, for the problem of heteroskedastic general linear hypothesis testing (GLHT) in high-dimensional settings, we propose a random integration method based on the reference L2-norm to deal with such problems. The asymptotic properties of the test statistic can be obtained under the null hypothesis when the relationship between data dimensions and sample size is not specified. The results show that it is more advisable to approximate the null distribution of the test using the distribution of the chi-square type mixture, and it is shown through some numerical simulations and real data analysis that our proposed test is powerful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1