Debapratim Banerjee, Soumendu Sundar Mukherjee, Dipranjan Pal
{"title":"具有相关条目的高斯随机对称矩阵的边缘谱","authors":"Debapratim Banerjee, Soumendu Sundar Mukherjee, Dipranjan Pal","doi":"arxiv-2409.11381","DOIUrl":null,"url":null,"abstract":"We study the largest eigenvalue of a Gaussian random symmetric matrix $X_n$,\nwith zero-mean, unit variance entries satisfying the condition $\\sup_{(i, j)\n\\ne (i', j')}|\\mathbb{E}[X_{ij} X_{i'j'}]| = O(n^{-(1 + \\varepsilon)})$, where\n$\\varepsilon > 0$. It follows from Catalano et al. (2024) that the empirical\nspectral distribution of $n^{-1/2} X_n$ converges weakly almost surely to the\nstandard semi-circle law. Using a F\\\"{u}redi-Koml\\'{o}s-type high moment\nanalysis, we show that the largest eigenvalue $\\lambda_1(n^{-1/2} X_n)$ of\n$n^{-1/2} X_n$ converges almost surely to $2$. This result is essentially\noptimal in the sense that one cannot take $\\varepsilon = 0$ and still obtain an\nalmost sure limit of $2$. We also derive Gaussian fluctuation results for the\nlargest eigenvalue in the case where the entries have a common non-zero mean.\nLet $Y_n = X_n + \\frac{\\lambda}{\\sqrt{n}}\\mathbf{1} \\mathbf{1}^\\top$. When\n$\\varepsilon \\ge 1$ and $\\lambda \\gg n^{1/4}$, we show that \\[ n^{1/2}\\bigg(\\lambda_1(n^{-1/2} Y_n) - \\lambda - \\frac{1}{\\lambda}\\bigg)\n\\xrightarrow{d} \\sqrt{2} Z, \\] where $Z$ is a standard Gaussian. On the other\nhand, when $0 < \\varepsilon < 1$, we have $\\mathrm{Var}(\\frac{1}{n}\\sum_{i,\nj}X_{ij}) = O(n^{1 - \\varepsilon})$. Assuming that\n$\\mathrm{Var}(\\frac{1}{n}\\sum_{i, j} X_{ij}) = \\sigma^2 n^{1 - \\varepsilon} (1\n+ o(1))$, if $\\lambda \\gg n^{\\varepsilon/4}$, then we have \\[ n^{\\varepsilon/2}\\bigg(\\lambda_1(n^{-1/2} Y_n) - \\lambda -\n\\frac{1}{\\lambda}\\bigg) \\xrightarrow{d} \\sigma Z. \\] While the ranges of\n$\\lambda$ in these fluctuation results are certainly not optimal, a striking\naspect is that different scalings are required in the two regimes $0 <\n\\varepsilon < 1$ and $\\varepsilon \\ge 1$.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge spectra of Gaussian random symmetric matrices with correlated entries\",\"authors\":\"Debapratim Banerjee, Soumendu Sundar Mukherjee, Dipranjan Pal\",\"doi\":\"arxiv-2409.11381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the largest eigenvalue of a Gaussian random symmetric matrix $X_n$,\\nwith zero-mean, unit variance entries satisfying the condition $\\\\sup_{(i, j)\\n\\\\ne (i', j')}|\\\\mathbb{E}[X_{ij} X_{i'j'}]| = O(n^{-(1 + \\\\varepsilon)})$, where\\n$\\\\varepsilon > 0$. It follows from Catalano et al. (2024) that the empirical\\nspectral distribution of $n^{-1/2} X_n$ converges weakly almost surely to the\\nstandard semi-circle law. Using a F\\\\\\\"{u}redi-Koml\\\\'{o}s-type high moment\\nanalysis, we show that the largest eigenvalue $\\\\lambda_1(n^{-1/2} X_n)$ of\\n$n^{-1/2} X_n$ converges almost surely to $2$. This result is essentially\\noptimal in the sense that one cannot take $\\\\varepsilon = 0$ and still obtain an\\nalmost sure limit of $2$. We also derive Gaussian fluctuation results for the\\nlargest eigenvalue in the case where the entries have a common non-zero mean.\\nLet $Y_n = X_n + \\\\frac{\\\\lambda}{\\\\sqrt{n}}\\\\mathbf{1} \\\\mathbf{1}^\\\\top$. When\\n$\\\\varepsilon \\\\ge 1$ and $\\\\lambda \\\\gg n^{1/4}$, we show that \\\\[ n^{1/2}\\\\bigg(\\\\lambda_1(n^{-1/2} Y_n) - \\\\lambda - \\\\frac{1}{\\\\lambda}\\\\bigg)\\n\\\\xrightarrow{d} \\\\sqrt{2} Z, \\\\] where $Z$ is a standard Gaussian. On the other\\nhand, when $0 < \\\\varepsilon < 1$, we have $\\\\mathrm{Var}(\\\\frac{1}{n}\\\\sum_{i,\\nj}X_{ij}) = O(n^{1 - \\\\varepsilon})$. Assuming that\\n$\\\\mathrm{Var}(\\\\frac{1}{n}\\\\sum_{i, j} X_{ij}) = \\\\sigma^2 n^{1 - \\\\varepsilon} (1\\n+ o(1))$, if $\\\\lambda \\\\gg n^{\\\\varepsilon/4}$, then we have \\\\[ n^{\\\\varepsilon/2}\\\\bigg(\\\\lambda_1(n^{-1/2} Y_n) - \\\\lambda -\\n\\\\frac{1}{\\\\lambda}\\\\bigg) \\\\xrightarrow{d} \\\\sigma Z. \\\\] While the ranges of\\n$\\\\lambda$ in these fluctuation results are certainly not optimal, a striking\\naspect is that different scalings are required in the two regimes $0 <\\n\\\\varepsilon < 1$ and $\\\\varepsilon \\\\ge 1$.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge spectra of Gaussian random symmetric matrices with correlated entries
We study the largest eigenvalue of a Gaussian random symmetric matrix $X_n$,
with zero-mean, unit variance entries satisfying the condition $\sup_{(i, j)
\ne (i', j')}|\mathbb{E}[X_{ij} X_{i'j'}]| = O(n^{-(1 + \varepsilon)})$, where
$\varepsilon > 0$. It follows from Catalano et al. (2024) that the empirical
spectral distribution of $n^{-1/2} X_n$ converges weakly almost surely to the
standard semi-circle law. Using a F\"{u}redi-Koml\'{o}s-type high moment
analysis, we show that the largest eigenvalue $\lambda_1(n^{-1/2} X_n)$ of
$n^{-1/2} X_n$ converges almost surely to $2$. This result is essentially
optimal in the sense that one cannot take $\varepsilon = 0$ and still obtain an
almost sure limit of $2$. We also derive Gaussian fluctuation results for the
largest eigenvalue in the case where the entries have a common non-zero mean.
Let $Y_n = X_n + \frac{\lambda}{\sqrt{n}}\mathbf{1} \mathbf{1}^\top$. When
$\varepsilon \ge 1$ and $\lambda \gg n^{1/4}$, we show that \[ n^{1/2}\bigg(\lambda_1(n^{-1/2} Y_n) - \lambda - \frac{1}{\lambda}\bigg)
\xrightarrow{d} \sqrt{2} Z, \] where $Z$ is a standard Gaussian. On the other
hand, when $0 < \varepsilon < 1$, we have $\mathrm{Var}(\frac{1}{n}\sum_{i,
j}X_{ij}) = O(n^{1 - \varepsilon})$. Assuming that
$\mathrm{Var}(\frac{1}{n}\sum_{i, j} X_{ij}) = \sigma^2 n^{1 - \varepsilon} (1
+ o(1))$, if $\lambda \gg n^{\varepsilon/4}$, then we have \[ n^{\varepsilon/2}\bigg(\lambda_1(n^{-1/2} Y_n) - \lambda -
\frac{1}{\lambda}\bigg) \xrightarrow{d} \sigma Z. \] While the ranges of
$\lambda$ in these fluctuation results are certainly not optimal, a striking
aspect is that different scalings are required in the two regimes $0 <
\varepsilon < 1$ and $\varepsilon \ge 1$.