在传统调查中利用 "少量学习 "识别合并

Shoulin Wei, Xiang Song, Zhijian Zhang, Bo Liang, Wei Dai, Wei Lu and Junxi Tao
{"title":"在传统调查中利用 \"少量学习 \"识别合并","authors":"Shoulin Wei, Xiang Song, Zhijian Zhang, Bo Liang, Wei Dai, Wei Lu and Junxi Tao","doi":"10.3847/1538-4365/ad66ca","DOIUrl":null,"url":null,"abstract":"Galaxy mergers exert a pivotal influence on the evolutionary trajectory of galaxies and the expansive development of cosmic structures. The primary challenge encountered in machine learning–based identification of merging galaxies arises from the scarcity of meticulously labeled data sets specifically dedicated to merging galaxies. In this paper, we propose a novel framework utilizing few-shot learning techniques to identify galaxy mergers in the Legacy Surveys. Few-shot learning enables effective classification of merging galaxies even when confronted with limited labeled training samples. We employ a deep convolutional neural network architecture trained on data sets sampled from Galaxy Zoo Decals to learn essential features and generalize to new instances. Our experimental results demonstrate the efficacy of our approach, achieving high accuracy and precision in identifying galaxy mergers with few labeled training samples. Furthermore, we investigate the impact of various factors, such as the number of training samples and network architectures, on the performance of the few-shot learning model. The proposed methodology offers a promising avenue for automating the identification of galaxy mergers in large-scale surveys, facilitating the comprehensive study of galaxy evolution and structure formation. In pursuit of identifying galaxy mergers, our methodology is applied to analyze the Data Release 9 of the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys. As a result, we have unveiled an extensive catalog encompassing 648,183 galaxy merger candidates. We publicly release the catalog alongside this paper.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Mergers in the Legacy Surveys with Few-shot Learning\",\"authors\":\"Shoulin Wei, Xiang Song, Zhijian Zhang, Bo Liang, Wei Dai, Wei Lu and Junxi Tao\",\"doi\":\"10.3847/1538-4365/ad66ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Galaxy mergers exert a pivotal influence on the evolutionary trajectory of galaxies and the expansive development of cosmic structures. The primary challenge encountered in machine learning–based identification of merging galaxies arises from the scarcity of meticulously labeled data sets specifically dedicated to merging galaxies. In this paper, we propose a novel framework utilizing few-shot learning techniques to identify galaxy mergers in the Legacy Surveys. Few-shot learning enables effective classification of merging galaxies even when confronted with limited labeled training samples. We employ a deep convolutional neural network architecture trained on data sets sampled from Galaxy Zoo Decals to learn essential features and generalize to new instances. Our experimental results demonstrate the efficacy of our approach, achieving high accuracy and precision in identifying galaxy mergers with few labeled training samples. Furthermore, we investigate the impact of various factors, such as the number of training samples and network architectures, on the performance of the few-shot learning model. The proposed methodology offers a promising avenue for automating the identification of galaxy mergers in large-scale surveys, facilitating the comprehensive study of galaxy evolution and structure formation. In pursuit of identifying galaxy mergers, our methodology is applied to analyze the Data Release 9 of the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys. As a result, we have unveiled an extensive catalog encompassing 648,183 galaxy merger candidates. We publicly release the catalog alongside this paper.\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad66ca\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad66ca","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

星系合并对星系的演化轨迹和宇宙结构的广阔发展有着举足轻重的影响。基于机器学习的星系合并识别所遇到的主要挑战来自于缺乏专门针对合并星系的细致标注数据集。在本文中,我们提出了一个新颖的框架,利用少量学习技术来识别遗留巡天中的星系合并。即使面对有限的标注训练样本,少量学习也能对合并星系进行有效分类。我们采用了一种深度卷积神经网络架构,该架构在星系动物园标记的数据集上进行训练,以学习基本特征并泛化到新的实例。我们的实验结果证明了我们方法的有效性,在识别星系合并方面实现了较高的准确率和精确度,只需少量标注训练样本。此外,我们还研究了各种因素(如训练样本数量和网络架构)对少量学习模型性能的影响。所提出的方法为在大规模巡天中自动识别星系合并提供了一个前景广阔的途径,有助于对星系演化和结构形成的全面研究。为了识别星系合并,我们应用我们的方法分析了暗能量光谱仪遗留成像巡天数据发布9。结果,我们公布了一个包含 648,183 个星系合并候选者的庞大星表。我们在发表本文的同时公开发布了这个星表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Mergers in the Legacy Surveys with Few-shot Learning
Galaxy mergers exert a pivotal influence on the evolutionary trajectory of galaxies and the expansive development of cosmic structures. The primary challenge encountered in machine learning–based identification of merging galaxies arises from the scarcity of meticulously labeled data sets specifically dedicated to merging galaxies. In this paper, we propose a novel framework utilizing few-shot learning techniques to identify galaxy mergers in the Legacy Surveys. Few-shot learning enables effective classification of merging galaxies even when confronted with limited labeled training samples. We employ a deep convolutional neural network architecture trained on data sets sampled from Galaxy Zoo Decals to learn essential features and generalize to new instances. Our experimental results demonstrate the efficacy of our approach, achieving high accuracy and precision in identifying galaxy mergers with few labeled training samples. Furthermore, we investigate the impact of various factors, such as the number of training samples and network architectures, on the performance of the few-shot learning model. The proposed methodology offers a promising avenue for automating the identification of galaxy mergers in large-scale surveys, facilitating the comprehensive study of galaxy evolution and structure formation. In pursuit of identifying galaxy mergers, our methodology is applied to analyze the Data Release 9 of the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys. As a result, we have unveiled an extensive catalog encompassing 648,183 galaxy merger candidates. We publicly release the catalog alongside this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework Optical Variability of Gaia CRF3 Sources with Robust Statistics and the 5000 Most Variable Quasars Metrics of Astrometric Variability in the International Celestial Reference Frame. I. Statistical Analysis and Selection of the Most Variable Sources Forecast of Foreground Cleaning Strategies for AliCPT-1 Catalog of Proper Orbits for 1.25 Million Main-belt Asteroids and Discovery of 136 New Collisional Families
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1