Cecilia Anna Brunello, Cecilia Cannarozzo, Eero Castrén
{"title":"重新思考TRKB在抗抑郁药和迷幻药作用中的作用","authors":"Cecilia Anna Brunello, Cecilia Cannarozzo, Eero Castrén","doi":"10.1016/j.tins.2024.08.011","DOIUrl":null,"url":null,"abstract":"<p>Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":14.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking the role of TRKB in the action of antidepressants and psychedelics\",\"authors\":\"Cecilia Anna Brunello, Cecilia Cannarozzo, Eero Castrén\",\"doi\":\"10.1016/j.tins.2024.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2024.08.011\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.08.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Rethinking the role of TRKB in the action of antidepressants and psychedelics
Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.
期刊介绍:
For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.