Hyondeog Kim, Wonyeop Lee, Youngwook Kim, Sang-Jin Lee, Wonyoung Choi, Geon Kook Lee, Seung-Jin Park, Shinyeong Ju, Seon-Young Kim, Cheolju Lee, Ji-Youn Han
{"title":"蛋白质基因组特征识别表皮生长因子受体(EGFR)和 ALK 野生型从不吸烟者肺腺癌的临床亚组","authors":"Hyondeog Kim, Wonyeop Lee, Youngwook Kim, Sang-Jin Lee, Wonyoung Choi, Geon Kook Lee, Seung-Jin Park, Shinyeong Ju, Seon-Young Kim, Cheolju Lee, Ji-Youn Han","doi":"10.1038/s12276-024-01320-0","DOIUrl":null,"url":null,"abstract":"Patients with lung adenocarcinoma who have never smoked (NSLA) and lack key driver mutations, such as those in the EGFR and ALK genes, face limited options for targeted therapies. They also tend to have poorer outcomes with immune checkpoint inhibitors than lung cancer patients who have a history of smoking. The proteogenomic profile of nonsmoking lung adenocarcinoma patients without these oncogenic driver mutations is poorly understood, which complicates the precise molecular classification of these cancers and highlights a significant area of unmet clinical need. This study analyzed the genome, transcriptome, and LC‒MS/MS-TMT-driven proteome data of tumors obtained from 99 Korean never-smoker lung adenocarcinoma patients. NSLA tumors without EGFR or ALK driver oncogenes were classified into four proteogenomic subgroups: proliferation, angiogenesis, immune, and metabolism subgroups. These 4 molecular subgroups were strongly associated with distinct clinical outcomes. The proliferation and angiogenesis subtypes were associated with a poorer prognosis, while the immune subtype was associated with the most favorable outcome, which was validated in an external lung cancer dataset. Genomic-wide impacts were analyzed, and significant correlations were found between copy number alterations and both the transcriptome and proteome for several genes, with enrichment in the ERBB, neurotrophin, insulin, and MAPK signaling pathways. Proteogenomic analyses suggested several targetable genes and proteins, including CDKs and ATR, as potential therapeutic targets in the proliferation subgroup. Upregulated cytokines, such as CCL5 and CXCL13, in the immune subgroup may serve as potential targets for combination immunotherapy. Our comprehensive proteogenomic analysis revealed the molecular subtypes of EGFR- and ALK-wild-type NSLA with significant unmet clinical needs. Lung cancer is the leading cause of cancer deaths worldwide, with increasing cases in non-smokers, particularly Asian women. This research investigates lung adenocarcinoma in non-smokers who don’t have common genetic changes, using a multi-omics approach. The study involved 99 patients, specifically those without typical EGFR or ALK mutations, to better understand the disease at a molecular level and find new treatments. The study shows the variety within non-smoker lung cancers and suggests that different groups may need specific treatments. Understanding the molecular types of lung adenocarcinoma in non-smokers can lead to better, personalized treatments and improved health outcomes. This research could lead to more effective treatments for non-smoker lung cancer, potentially improving survival and quality of life for this growing patient group. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 9","pages":"2082-2095"},"PeriodicalIF":9.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01320-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Proteogenomic characterization identifies clinical subgroups in EGFR and ALK wild-type never-smoker lung adenocarcinoma\",\"authors\":\"Hyondeog Kim, Wonyeop Lee, Youngwook Kim, Sang-Jin Lee, Wonyoung Choi, Geon Kook Lee, Seung-Jin Park, Shinyeong Ju, Seon-Young Kim, Cheolju Lee, Ji-Youn Han\",\"doi\":\"10.1038/s12276-024-01320-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patients with lung adenocarcinoma who have never smoked (NSLA) and lack key driver mutations, such as those in the EGFR and ALK genes, face limited options for targeted therapies. They also tend to have poorer outcomes with immune checkpoint inhibitors than lung cancer patients who have a history of smoking. The proteogenomic profile of nonsmoking lung adenocarcinoma patients without these oncogenic driver mutations is poorly understood, which complicates the precise molecular classification of these cancers and highlights a significant area of unmet clinical need. This study analyzed the genome, transcriptome, and LC‒MS/MS-TMT-driven proteome data of tumors obtained from 99 Korean never-smoker lung adenocarcinoma patients. NSLA tumors without EGFR or ALK driver oncogenes were classified into four proteogenomic subgroups: proliferation, angiogenesis, immune, and metabolism subgroups. These 4 molecular subgroups were strongly associated with distinct clinical outcomes. The proliferation and angiogenesis subtypes were associated with a poorer prognosis, while the immune subtype was associated with the most favorable outcome, which was validated in an external lung cancer dataset. Genomic-wide impacts were analyzed, and significant correlations were found between copy number alterations and both the transcriptome and proteome for several genes, with enrichment in the ERBB, neurotrophin, insulin, and MAPK signaling pathways. Proteogenomic analyses suggested several targetable genes and proteins, including CDKs and ATR, as potential therapeutic targets in the proliferation subgroup. Upregulated cytokines, such as CCL5 and CXCL13, in the immune subgroup may serve as potential targets for combination immunotherapy. Our comprehensive proteogenomic analysis revealed the molecular subtypes of EGFR- and ALK-wild-type NSLA with significant unmet clinical needs. Lung cancer is the leading cause of cancer deaths worldwide, with increasing cases in non-smokers, particularly Asian women. This research investigates lung adenocarcinoma in non-smokers who don’t have common genetic changes, using a multi-omics approach. The study involved 99 patients, specifically those without typical EGFR or ALK mutations, to better understand the disease at a molecular level and find new treatments. The study shows the variety within non-smoker lung cancers and suggests that different groups may need specific treatments. Understanding the molecular types of lung adenocarcinoma in non-smokers can lead to better, personalized treatments and improved health outcomes. This research could lead to more effective treatments for non-smoker lung cancer, potentially improving survival and quality of life for this growing patient group. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.\",\"PeriodicalId\":50466,\"journal\":{\"name\":\"Experimental and Molecular Medicine\",\"volume\":\"56 9\",\"pages\":\"2082-2095\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s12276-024-01320-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s12276-024-01320-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s12276-024-01320-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Proteogenomic characterization identifies clinical subgroups in EGFR and ALK wild-type never-smoker lung adenocarcinoma
Patients with lung adenocarcinoma who have never smoked (NSLA) and lack key driver mutations, such as those in the EGFR and ALK genes, face limited options for targeted therapies. They also tend to have poorer outcomes with immune checkpoint inhibitors than lung cancer patients who have a history of smoking. The proteogenomic profile of nonsmoking lung adenocarcinoma patients without these oncogenic driver mutations is poorly understood, which complicates the precise molecular classification of these cancers and highlights a significant area of unmet clinical need. This study analyzed the genome, transcriptome, and LC‒MS/MS-TMT-driven proteome data of tumors obtained from 99 Korean never-smoker lung adenocarcinoma patients. NSLA tumors without EGFR or ALK driver oncogenes were classified into four proteogenomic subgroups: proliferation, angiogenesis, immune, and metabolism subgroups. These 4 molecular subgroups were strongly associated with distinct clinical outcomes. The proliferation and angiogenesis subtypes were associated with a poorer prognosis, while the immune subtype was associated with the most favorable outcome, which was validated in an external lung cancer dataset. Genomic-wide impacts were analyzed, and significant correlations were found between copy number alterations and both the transcriptome and proteome for several genes, with enrichment in the ERBB, neurotrophin, insulin, and MAPK signaling pathways. Proteogenomic analyses suggested several targetable genes and proteins, including CDKs and ATR, as potential therapeutic targets in the proliferation subgroup. Upregulated cytokines, such as CCL5 and CXCL13, in the immune subgroup may serve as potential targets for combination immunotherapy. Our comprehensive proteogenomic analysis revealed the molecular subtypes of EGFR- and ALK-wild-type NSLA with significant unmet clinical needs. Lung cancer is the leading cause of cancer deaths worldwide, with increasing cases in non-smokers, particularly Asian women. This research investigates lung adenocarcinoma in non-smokers who don’t have common genetic changes, using a multi-omics approach. The study involved 99 patients, specifically those without typical EGFR or ALK mutations, to better understand the disease at a molecular level and find new treatments. The study shows the variety within non-smoker lung cancers and suggests that different groups may need specific treatments. Understanding the molecular types of lung adenocarcinoma in non-smokers can lead to better, personalized treatments and improved health outcomes. This research could lead to more effective treatments for non-smoker lung cancer, potentially improving survival and quality of life for this growing patient group. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
期刊介绍:
Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.