计数响应的高维回归

Or Zilberman, Felix Abramovich
{"title":"计数响应的高维回归","authors":"Or Zilberman, Felix Abramovich","doi":"arxiv-2409.08821","DOIUrl":null,"url":null,"abstract":"We consider high-dimensional regression with a count response modeled by\nPoisson or negative binomial generalized linear model (GLM). We propose a\npenalized maximum likelihood estimator with a properly chosen complexity\npenalty and establish its adaptive minimaxity across models of various\nsparsity. To make the procedure computationally feasible for high-dimensional\ndata we consider its LASSO and SLOPE convex surrogates. Their performance is\nillustrated through simulated and real-data examples.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional regression with a count response\",\"authors\":\"Or Zilberman, Felix Abramovich\",\"doi\":\"arxiv-2409.08821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider high-dimensional regression with a count response modeled by\\nPoisson or negative binomial generalized linear model (GLM). We propose a\\npenalized maximum likelihood estimator with a properly chosen complexity\\npenalty and establish its adaptive minimaxity across models of various\\nsparsity. To make the procedure computationally feasible for high-dimensional\\ndata we consider its LASSO and SLOPE convex surrogates. Their performance is\\nillustrated through simulated and real-data examples.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了以泊松或负二项广义线性模型(GLM)为模型的计数响应的高维回归。我们提出了一个具有适当复杂度惩罚的最大似然估计器,并确定了它在各种稀疏模型中的自适应最小性。为了使该程序在高维数据的计算上可行,我们考虑了其 LASSO 和 SLOPE 凸代理。我们通过模拟和真实数据实例来说明它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-dimensional regression with a count response
We consider high-dimensional regression with a count response modeled by Poisson or negative binomial generalized linear model (GLM). We propose a penalized maximum likelihood estimator with a properly chosen complexity penalty and establish its adaptive minimaxity across models of various sparsity. To make the procedure computationally feasible for high-dimensional data we consider its LASSO and SLOPE convex surrogates. Their performance is illustrated through simulated and real-data examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1