{"title":"展望未来的深度学习理论:一些基本概念和特征","authors":"Weijie J. Su","doi":"10.1007/s11432-023-4129-1","DOIUrl":null,"url":null,"abstract":"<p>To advance deep learning methodologies in the next decade, a theoretical framework for reasoning about modern neural networks is needed. While efforts are increasing toward demystifying why deep learning is so effective, a comprehensive picture remains lacking, suggesting that a better theory is possible. We argue that a future deep learning theory should inherit three characteristics: a hierarchically structured network architecture, parameters iteratively optimized using stochastic gradient-based methods, and information from the data that evolves compressively. As an instantiation, we integrate these characteristics into a graphical model called neurashed. This model effectively explains some common empirical patterns in deep learning. In particular, neurashed enables insights into implicit regularization, information bottleneck, and local elasticity. Finally, we discuss how neurashed can guide the development of deep learning theories.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Envisioning future deep learning theories: some basic concepts and characteristics\",\"authors\":\"Weijie J. Su\",\"doi\":\"10.1007/s11432-023-4129-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To advance deep learning methodologies in the next decade, a theoretical framework for reasoning about modern neural networks is needed. While efforts are increasing toward demystifying why deep learning is so effective, a comprehensive picture remains lacking, suggesting that a better theory is possible. We argue that a future deep learning theory should inherit three characteristics: a hierarchically structured network architecture, parameters iteratively optimized using stochastic gradient-based methods, and information from the data that evolves compressively. As an instantiation, we integrate these characteristics into a graphical model called neurashed. This model effectively explains some common empirical patterns in deep learning. In particular, neurashed enables insights into implicit regularization, information bottleneck, and local elasticity. Finally, we discuss how neurashed can guide the development of deep learning theories.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-4129-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4129-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Envisioning future deep learning theories: some basic concepts and characteristics
To advance deep learning methodologies in the next decade, a theoretical framework for reasoning about modern neural networks is needed. While efforts are increasing toward demystifying why deep learning is so effective, a comprehensive picture remains lacking, suggesting that a better theory is possible. We argue that a future deep learning theory should inherit three characteristics: a hierarchically structured network architecture, parameters iteratively optimized using stochastic gradient-based methods, and information from the data that evolves compressively. As an instantiation, we integrate these characteristics into a graphical model called neurashed. This model effectively explains some common empirical patterns in deep learning. In particular, neurashed enables insights into implicit regularization, information bottleneck, and local elasticity. Finally, we discuss how neurashed can guide the development of deep learning theories.
期刊介绍:
Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.