Yao Jiang, Rui Zhang, Bo Sun, Tianyu Wang, Bo Zhang, Jinsheng Tu, Shihai Nie, Hang Jiang, Kangyi Chen
{"title":"利用基于随机森林的多卫星数据融合进行 GNSS-IR 土壤水分检索","authors":"Yao Jiang, Rui Zhang, Bo Sun, Tianyu Wang, Bo Zhang, Jinsheng Tu, Shihai Nie, Hang Jiang, Kangyi Chen","doi":"10.3390/rs16183428","DOIUrl":null,"url":null,"abstract":"The accuracy and reliability of soil moisture retrieval based on Global Positioning System (GPS) single-star Signal-to-Noise Ratio (SNR) data is low due to the influence of spatial and temporal differences of different satellites. Therefore, this paper proposes a Random Forest (RF)-based multi-satellite data fusion Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) soil moisture retrieval method, which utilizes the RF Model’s Mean Decrease Impurity (MDI) algorithm to adaptively assign arc weights to fuse all available satellite data to obtain accurate retrieval results. Subsequently, the effectiveness of the proposed method was validated using GPS data from the Plate Boundary Observatory (PBO) network sites P041 and P037, as well as data collected in Lamasquere, France. A Support Vector Machine model (SVM), Radial Basis Function (RBF) neural network model, and Convolutional Neural Network model (CNN) are introduced for the comparison of accuracy. The results indicated that the proposed method had the best retrieval performance, with Root Mean Square Error (RMSE) values of 0.032, 0.028, and 0.003 cm3/cm3, Mean Absolute Error (MAE) values of 0.025, 0.022, and 0.002 cm3/cm3, and correlation coefficients (R) of 0.94, 0.95, and 0.98, respectively, at the three sites. Therefore, the proposed soil moisture retrieval model demonstrates strong robustness and generalization capabilities, providing a reference for achieving high-precision, real-time monitoring of soil moisture.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"18 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GNSS-IR Soil Moisture Retrieval Using Multi-Satellite Data Fusion Based on Random Forest\",\"authors\":\"Yao Jiang, Rui Zhang, Bo Sun, Tianyu Wang, Bo Zhang, Jinsheng Tu, Shihai Nie, Hang Jiang, Kangyi Chen\",\"doi\":\"10.3390/rs16183428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy and reliability of soil moisture retrieval based on Global Positioning System (GPS) single-star Signal-to-Noise Ratio (SNR) data is low due to the influence of spatial and temporal differences of different satellites. Therefore, this paper proposes a Random Forest (RF)-based multi-satellite data fusion Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) soil moisture retrieval method, which utilizes the RF Model’s Mean Decrease Impurity (MDI) algorithm to adaptively assign arc weights to fuse all available satellite data to obtain accurate retrieval results. Subsequently, the effectiveness of the proposed method was validated using GPS data from the Plate Boundary Observatory (PBO) network sites P041 and P037, as well as data collected in Lamasquere, France. A Support Vector Machine model (SVM), Radial Basis Function (RBF) neural network model, and Convolutional Neural Network model (CNN) are introduced for the comparison of accuracy. The results indicated that the proposed method had the best retrieval performance, with Root Mean Square Error (RMSE) values of 0.032, 0.028, and 0.003 cm3/cm3, Mean Absolute Error (MAE) values of 0.025, 0.022, and 0.002 cm3/cm3, and correlation coefficients (R) of 0.94, 0.95, and 0.98, respectively, at the three sites. Therefore, the proposed soil moisture retrieval model demonstrates strong robustness and generalization capabilities, providing a reference for achieving high-precision, real-time monitoring of soil moisture.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183428\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183428","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
GNSS-IR Soil Moisture Retrieval Using Multi-Satellite Data Fusion Based on Random Forest
The accuracy and reliability of soil moisture retrieval based on Global Positioning System (GPS) single-star Signal-to-Noise Ratio (SNR) data is low due to the influence of spatial and temporal differences of different satellites. Therefore, this paper proposes a Random Forest (RF)-based multi-satellite data fusion Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) soil moisture retrieval method, which utilizes the RF Model’s Mean Decrease Impurity (MDI) algorithm to adaptively assign arc weights to fuse all available satellite data to obtain accurate retrieval results. Subsequently, the effectiveness of the proposed method was validated using GPS data from the Plate Boundary Observatory (PBO) network sites P041 and P037, as well as data collected in Lamasquere, France. A Support Vector Machine model (SVM), Radial Basis Function (RBF) neural network model, and Convolutional Neural Network model (CNN) are introduced for the comparison of accuracy. The results indicated that the proposed method had the best retrieval performance, with Root Mean Square Error (RMSE) values of 0.032, 0.028, and 0.003 cm3/cm3, Mean Absolute Error (MAE) values of 0.025, 0.022, and 0.002 cm3/cm3, and correlation coefficients (R) of 0.94, 0.95, and 0.98, respectively, at the three sites. Therefore, the proposed soil moisture retrieval model demonstrates strong robustness and generalization capabilities, providing a reference for achieving high-precision, real-time monitoring of soil moisture.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.