AFMSFFNet:基于无锚特征的船舶探测融合模型

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Pub Date : 2024-09-18 DOI:10.3390/rs16183465
Yuxin Zhang, Chunlei Dong, Lixin Guo, Xiao Meng, Yue Liu, Qihao Wei
{"title":"AFMSFFNet:基于无锚特征的船舶探测融合模型","authors":"Yuxin Zhang, Chunlei Dong, Lixin Guo, Xiao Meng, Yue Liu, Qihao Wei","doi":"10.3390/rs16183465","DOIUrl":null,"url":null,"abstract":"This paper aims to improve a small-scale object detection model to achieve detection accuracy matching or even surpassing that of complex models. Efforts are made in the module design phase to minimize parameter count as much as possible, thereby providing the potential for rapid detection of maritime targets. Here, this paper introduces an innovative Anchor-Free-based Multi-Scale Feature Fusion Network (AFMSFFNet), which improves the problems of missed detection and false positives, particularly in inshore or small target scenarios. Leveraging the YOLOX tiny as the foundational architecture, our proposed AFMSFFNet incorporates a novel Adaptive Bidirectional Fusion Pyramid Network (AB-FPN) for efficient multi-scale feature fusion, enhancing the saliency representation of targets and reducing interference from complex backgrounds. Simultaneously, the designed Multi-Scale Global Attention Detection Head (MGAHead) utilizes a larger receptive field to learn object features, generating high-quality reconstructed features for enhanced semantic information integration. Extensive experiments conducted on publicly available Synthetic Aperture Radar (SAR) image ship datasets demonstrate that AFMSFFNet outperforms the traditional baseline models in detection performance. The results indicate an improvement of 2.32% in detection accuracy compared to the YOLOX tiny model. Additionally, AFMSFFNet achieves a Frames Per Second (FPS) of 78.26 in SSDD, showcasing superior efficiency compared to the well-established performance networks, such as faster R-CNN and CenterNet, with efficiency improvement ranging from 4.7 to 6.7 times. This research provides a valuable solution for efficient ship detection in complex backgrounds, demonstrating the efficacy of AFMSFFNet through quantitative improvements in accuracy and efficiency compared to existing models.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"33 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AFMSFFNet: An Anchor-Free-Based Feature Fusion Model for Ship Detection\",\"authors\":\"Yuxin Zhang, Chunlei Dong, Lixin Guo, Xiao Meng, Yue Liu, Qihao Wei\",\"doi\":\"10.3390/rs16183465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to improve a small-scale object detection model to achieve detection accuracy matching or even surpassing that of complex models. Efforts are made in the module design phase to minimize parameter count as much as possible, thereby providing the potential for rapid detection of maritime targets. Here, this paper introduces an innovative Anchor-Free-based Multi-Scale Feature Fusion Network (AFMSFFNet), which improves the problems of missed detection and false positives, particularly in inshore or small target scenarios. Leveraging the YOLOX tiny as the foundational architecture, our proposed AFMSFFNet incorporates a novel Adaptive Bidirectional Fusion Pyramid Network (AB-FPN) for efficient multi-scale feature fusion, enhancing the saliency representation of targets and reducing interference from complex backgrounds. Simultaneously, the designed Multi-Scale Global Attention Detection Head (MGAHead) utilizes a larger receptive field to learn object features, generating high-quality reconstructed features for enhanced semantic information integration. Extensive experiments conducted on publicly available Synthetic Aperture Radar (SAR) image ship datasets demonstrate that AFMSFFNet outperforms the traditional baseline models in detection performance. The results indicate an improvement of 2.32% in detection accuracy compared to the YOLOX tiny model. Additionally, AFMSFFNet achieves a Frames Per Second (FPS) of 78.26 in SSDD, showcasing superior efficiency compared to the well-established performance networks, such as faster R-CNN and CenterNet, with efficiency improvement ranging from 4.7 to 6.7 times. This research provides a valuable solution for efficient ship detection in complex backgrounds, demonstrating the efficacy of AFMSFFNet through quantitative improvements in accuracy and efficiency compared to existing models.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183465\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183465","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在改进小型目标探测模型,使其探测精度达到甚至超过复杂模型。在模块设计阶段就努力尽可能减少参数数量,从而为快速探测海上目标提供可能。本文介绍了一种创新的基于无锚的多尺度特征融合网络(AFMSFFNet),它能改善漏检和误报问题,尤其是在近岸或小目标场景中。我们提出的 AFMSFFNet 采用 YOLOX 微型作为基础架构,结合了新颖的自适应双向融合金字塔网络(AB-FPN)来实现高效的多尺度特征融合,从而增强了目标的显著性表示并减少了复杂背景的干扰。同时,设计的多尺度全局注意力检测头(MGAHead)利用更大的感受野来学习物体特征,生成高质量的重构特征,从而增强语义信息整合。在公开的合成孔径雷达(SAR)图像船舶数据集上进行的大量实验表明,AFMSFFNet 的检测性能优于传统的基线模型。结果表明,与 YOLOX 微型模型相比,AFMSFFNet 的检测准确率提高了 2.32%。此外,AFMSFFNet 在 SSDD 中的每秒帧数(FPS)达到 78.26,与更快的 R-CNN 和 CenterNet 等成熟的高性能网络相比,效率更高,提高了 4.7 到 6.7 倍。这项研究为在复杂背景下高效检测船舶提供了一个有价值的解决方案,与现有模型相比,AFMSFFNet 在准确性和效率方面都有了定量改进,从而证明了它的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AFMSFFNet: An Anchor-Free-Based Feature Fusion Model for Ship Detection
This paper aims to improve a small-scale object detection model to achieve detection accuracy matching or even surpassing that of complex models. Efforts are made in the module design phase to minimize parameter count as much as possible, thereby providing the potential for rapid detection of maritime targets. Here, this paper introduces an innovative Anchor-Free-based Multi-Scale Feature Fusion Network (AFMSFFNet), which improves the problems of missed detection and false positives, particularly in inshore or small target scenarios. Leveraging the YOLOX tiny as the foundational architecture, our proposed AFMSFFNet incorporates a novel Adaptive Bidirectional Fusion Pyramid Network (AB-FPN) for efficient multi-scale feature fusion, enhancing the saliency representation of targets and reducing interference from complex backgrounds. Simultaneously, the designed Multi-Scale Global Attention Detection Head (MGAHead) utilizes a larger receptive field to learn object features, generating high-quality reconstructed features for enhanced semantic information integration. Extensive experiments conducted on publicly available Synthetic Aperture Radar (SAR) image ship datasets demonstrate that AFMSFFNet outperforms the traditional baseline models in detection performance. The results indicate an improvement of 2.32% in detection accuracy compared to the YOLOX tiny model. Additionally, AFMSFFNet achieves a Frames Per Second (FPS) of 78.26 in SSDD, showcasing superior efficiency compared to the well-established performance networks, such as faster R-CNN and CenterNet, with efficiency improvement ranging from 4.7 to 6.7 times. This research provides a valuable solution for efficient ship detection in complex backgrounds, demonstrating the efficacy of AFMSFFNet through quantitative improvements in accuracy and efficiency compared to existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery Development of a Background Filtering Algorithm to Improve the Accuracy of Determining Underground Cavities Using Multi-Channel Ground-Penetrating Radar and Deep Learning Enhancing Digital Twins with Human Movement Data: A Comparative Study of Lidar-Based Tracking Methods Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time Mini-Satellite Fucheng 1 SAR: Interferometry to Monitor Mining-Induced Subsidence and Comparative Analysis with Sentinel-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1