{"title":"通过 ESIPT 过程对希夫碱铜复合物的结构、光物理性质和生物活性进行实验和理论研究的启示","authors":"Iravatham Rama, Singaravel Nathiya, Murugesan Panneerselvam, Annamalai Subashini, Luciano T. Costa, Gothandam Jeeva, Shanmugam Achiraman, Kumar Dhinesh","doi":"10.1002/aoc.7737","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A novel Schiff base (BSSMO) and its copper complex have been synthesized, and their structure was delineated using single crystal XRD studies. Computational techniques were used to design and evaluate BSSMO-based luminophores, revealing a significant intramolecular hydrogen bond within the molecule. Understanding ESIPT is crucial for optimizing photophysical and luminophore properties of organic molecules, especially for advancing optoelectronic devices. The study also explored the mechanisms of GSIPT and ESIPT for these BSSMO-based luminophores using transition state theory, charge distribution, molecular orbital analysis, and quantum theory of atoms in molecules. Results advocated that BSSMO-L2 exhibits higher absorption compared with BSSMO-L1 and the same trend is observed in emission spectral studies. However, the intensity of enol emissions in BSSMO-L2 is lower than that of keto (BSSMO-L3) emissions and the S1 (Keto form) emission of BSSMO-L3 shows significantly larger values, making it attractive for optoelectronic devices. The findings offer valuable insights for the development of ESIPT emitters with distinct photophysical properties. The in silico antidiabetic study of BSSMO-L2 explores the interaction with PPAR-γ protein, revealing a moderate affinity and stable complex, enhancing its bio-potential for future applications. The in vitro anticancer study of Cu-BSSMO-L2 complex shows a potential anticancer effect through mitochondrial and extrinsic death receptor mediated pathways. These insights contribute to the design of novel benzenesulfonamide-based bioactive molecules.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"38 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Insight Into Experimental and Theoretical Investigation of Structure, Photophysical Property by ESIPT Processes and Biological Activities of Schiff Base Copper Complex\",\"authors\":\"Iravatham Rama, Singaravel Nathiya, Murugesan Panneerselvam, Annamalai Subashini, Luciano T. Costa, Gothandam Jeeva, Shanmugam Achiraman, Kumar Dhinesh\",\"doi\":\"10.1002/aoc.7737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A novel Schiff base (BSSMO) and its copper complex have been synthesized, and their structure was delineated using single crystal XRD studies. Computational techniques were used to design and evaluate BSSMO-based luminophores, revealing a significant intramolecular hydrogen bond within the molecule. Understanding ESIPT is crucial for optimizing photophysical and luminophore properties of organic molecules, especially for advancing optoelectronic devices. The study also explored the mechanisms of GSIPT and ESIPT for these BSSMO-based luminophores using transition state theory, charge distribution, molecular orbital analysis, and quantum theory of atoms in molecules. Results advocated that BSSMO-L2 exhibits higher absorption compared with BSSMO-L1 and the same trend is observed in emission spectral studies. However, the intensity of enol emissions in BSSMO-L2 is lower than that of keto (BSSMO-L3) emissions and the S1 (Keto form) emission of BSSMO-L3 shows significantly larger values, making it attractive for optoelectronic devices. The findings offer valuable insights for the development of ESIPT emitters with distinct photophysical properties. The in silico antidiabetic study of BSSMO-L2 explores the interaction with PPAR-γ protein, revealing a moderate affinity and stable complex, enhancing its bio-potential for future applications. The in vitro anticancer study of Cu-BSSMO-L2 complex shows a potential anticancer effect through mitochondrial and extrinsic death receptor mediated pathways. These insights contribute to the design of novel benzenesulfonamide-based bioactive molecules.</p>\\n </div>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"38 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7737\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7737","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
An Insight Into Experimental and Theoretical Investigation of Structure, Photophysical Property by ESIPT Processes and Biological Activities of Schiff Base Copper Complex
A novel Schiff base (BSSMO) and its copper complex have been synthesized, and their structure was delineated using single crystal XRD studies. Computational techniques were used to design and evaluate BSSMO-based luminophores, revealing a significant intramolecular hydrogen bond within the molecule. Understanding ESIPT is crucial for optimizing photophysical and luminophore properties of organic molecules, especially for advancing optoelectronic devices. The study also explored the mechanisms of GSIPT and ESIPT for these BSSMO-based luminophores using transition state theory, charge distribution, molecular orbital analysis, and quantum theory of atoms in molecules. Results advocated that BSSMO-L2 exhibits higher absorption compared with BSSMO-L1 and the same trend is observed in emission spectral studies. However, the intensity of enol emissions in BSSMO-L2 is lower than that of keto (BSSMO-L3) emissions and the S1 (Keto form) emission of BSSMO-L3 shows significantly larger values, making it attractive for optoelectronic devices. The findings offer valuable insights for the development of ESIPT emitters with distinct photophysical properties. The in silico antidiabetic study of BSSMO-L2 explores the interaction with PPAR-γ protein, revealing a moderate affinity and stable complex, enhancing its bio-potential for future applications. The in vitro anticancer study of Cu-BSSMO-L2 complex shows a potential anticancer effect through mitochondrial and extrinsic death receptor mediated pathways. These insights contribute to the design of novel benzenesulfonamide-based bioactive molecules.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.