oboVox 远场扬声器识别:使用预训练模型的新型数据增强方法

Muhammad Sudipto Siam Dip, Md Anik Hasan, Sapnil Sarker Bipro, Md Abdur Raiyan, Mohammod Abdul Motin
{"title":"oboVox 远场扬声器识别:使用预训练模型的新型数据增强方法","authors":"Muhammad Sudipto Siam Dip, Md Anik Hasan, Sapnil Sarker Bipro, Md Abdur Raiyan, Mohammod Abdul Motin","doi":"arxiv-2409.10240","DOIUrl":null,"url":null,"abstract":"In this study, we address the challenge of speaker recognition using a novel\ndata augmentation technique of adding noise to enrollment files. This technique\nefficiently aligns the sources of test and enrollment files, enhancing\ncomparability. Various pre-trained models were employed, with the resnet model\nachieving the highest DCF of 0.84 and an EER of 13.44. The augmentation\ntechnique notably improved these results to 0.75 DCF and 12.79 EER for the\nresnet model. Comparative analysis revealed the superiority of resnet over\nmodels such as ECPA, Mel-spectrogram, Payonnet, and Titanet large. Results,\nalong with different augmentation schemes, contribute to the success of RoboVox\nfar-field speaker recognition in this paper","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"oboVox Far Field Speaker Recognition: A Novel Data Augmentation Approach with Pretrained Models\",\"authors\":\"Muhammad Sudipto Siam Dip, Md Anik Hasan, Sapnil Sarker Bipro, Md Abdur Raiyan, Mohammod Abdul Motin\",\"doi\":\"arxiv-2409.10240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we address the challenge of speaker recognition using a novel\\ndata augmentation technique of adding noise to enrollment files. This technique\\nefficiently aligns the sources of test and enrollment files, enhancing\\ncomparability. Various pre-trained models were employed, with the resnet model\\nachieving the highest DCF of 0.84 and an EER of 13.44. The augmentation\\ntechnique notably improved these results to 0.75 DCF and 12.79 EER for the\\nresnet model. Comparative analysis revealed the superiority of resnet over\\nmodels such as ECPA, Mel-spectrogram, Payonnet, and Titanet large. Results,\\nalong with different augmentation schemes, contribute to the success of RoboVox\\nfar-field speaker recognition in this paper\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们采用了一种新的数据增强技术,即在注册文件中添加噪音,来应对说话人识别的挑战。这项技术有效地调整了测试文件和注册文件的来源,提高了可比性。我们采用了多种预训练模型,其中 resnet 模型的 DCF 最高,为 0.84,EER 为 13.44。增强技术显著改善了这些结果,resnet 模型的 DCF 和 EER 分别为 0.75 和 12.79。对比分析表明,resnet 优于 ECPA、Mel-spectrogram、Payonnet 和 Titanet large 等模型。这些结果以及不同的增强方案为本文中 RoboVox 远场扬声器识别的成功做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
oboVox Far Field Speaker Recognition: A Novel Data Augmentation Approach with Pretrained Models
In this study, we address the challenge of speaker recognition using a novel data augmentation technique of adding noise to enrollment files. This technique efficiently aligns the sources of test and enrollment files, enhancing comparability. Various pre-trained models were employed, with the resnet model achieving the highest DCF of 0.84 and an EER of 13.44. The augmentation technique notably improved these results to 0.75 DCF and 12.79 EER for the resnet model. Comparative analysis revealed the superiority of resnet over models such as ECPA, Mel-spectrogram, Payonnet, and Titanet large. Results, along with different augmentation schemes, contribute to the success of RoboVox far-field speaker recognition in this paper
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1