大数据应用:概述、挑战和未来

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-09-16 DOI:10.1007/s10462-024-10938-5
Afzal Badshah, Ali Daud, Riad Alharbey, Ameen Banjar, Amal Bukhari, Bader Alshemaimri
{"title":"大数据应用:概述、挑战和未来","authors":"Afzal Badshah,&nbsp;Ali Daud,&nbsp;Riad Alharbey,&nbsp;Ameen Banjar,&nbsp;Amal Bukhari,&nbsp;Bader Alshemaimri","doi":"10.1007/s10462-024-10938-5","DOIUrl":null,"url":null,"abstract":"<div><p>Big Data (i.e., social big data, vehicular big data, healthcare big data etc) points to massive and complex data, that require special technologies and approaches for storage, processing, and analysis. Similarly, big data applications are software and systems utilizing large and complex datasets to extract insights, support decision-making, and address diverse business and societal challenges. Recently, the significance of big data applications has grown immensely for organizations across diverse sectors as they increasingly rely on insights derived from data. The increasing reliance on data insights has rendered traditional technologies and platforms inefficient due to scalability limitations and performance issues. This study contributes by identifying key domains impacted by big data, examining its effect on decision-making, addressing inherent complexities and opportunities, exploring core technologies, and offering solutions for potential concerns. Additionally, it conducts a comparative analysis to demonstrate the superiority of this research. These contributions provide valuable insights into the evolving landscape shaped by big data applications.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 11","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10938-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Big data applications: overview, challenges and future\",\"authors\":\"Afzal Badshah,&nbsp;Ali Daud,&nbsp;Riad Alharbey,&nbsp;Ameen Banjar,&nbsp;Amal Bukhari,&nbsp;Bader Alshemaimri\",\"doi\":\"10.1007/s10462-024-10938-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Big Data (i.e., social big data, vehicular big data, healthcare big data etc) points to massive and complex data, that require special technologies and approaches for storage, processing, and analysis. Similarly, big data applications are software and systems utilizing large and complex datasets to extract insights, support decision-making, and address diverse business and societal challenges. Recently, the significance of big data applications has grown immensely for organizations across diverse sectors as they increasingly rely on insights derived from data. The increasing reliance on data insights has rendered traditional technologies and platforms inefficient due to scalability limitations and performance issues. This study contributes by identifying key domains impacted by big data, examining its effect on decision-making, addressing inherent complexities and opportunities, exploring core technologies, and offering solutions for potential concerns. Additionally, it conducts a comparative analysis to demonstrate the superiority of this research. These contributions provide valuable insights into the evolving landscape shaped by big data applications.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"57 11\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10938-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10938-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10938-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大数据(即社会大数据、车辆大数据、医疗保健大数据等)指的是海量和复杂的数据,需要特殊的技术和方法来存储、处理和分析。同样,大数据应用是指利用大型复杂数据集提取洞察力、支持决策以及应对各种商业和社会挑战的软件和系统。近来,大数据应用对各行各业的组织机构来说意义重大,因为它们越来越依赖从数据中获得的洞察力。由于对数据洞察力的依赖与日俱增,传统技术和平台已因可扩展性限制和性能问题而变得效率低下。本研究通过确定受大数据影响的关键领域、研究大数据对决策的影响、解决固有的复杂性和机遇、探索核心技术以及针对潜在问题提供解决方案,为本研究做出贡献。此外,它还进行了比较分析,以证明这项研究的优越性。这些贡献为了解大数据应用所塑造的不断演变的格局提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big data applications: overview, challenges and future

Big Data (i.e., social big data, vehicular big data, healthcare big data etc) points to massive and complex data, that require special technologies and approaches for storage, processing, and analysis. Similarly, big data applications are software and systems utilizing large and complex datasets to extract insights, support decision-making, and address diverse business and societal challenges. Recently, the significance of big data applications has grown immensely for organizations across diverse sectors as they increasingly rely on insights derived from data. The increasing reliance on data insights has rendered traditional technologies and platforms inefficient due to scalability limitations and performance issues. This study contributes by identifying key domains impacted by big data, examining its effect on decision-making, addressing inherent complexities and opportunities, exploring core technologies, and offering solutions for potential concerns. Additionally, it conducts a comparative analysis to demonstrate the superiority of this research. These contributions provide valuable insights into the evolving landscape shaped by big data applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Federated learning design and functional models: survey A systematic literature review of recent advances on context-aware recommender systems Escape: an optimization method based on crowd evacuation behaviors A multi-strategy boosted bald eagle search algorithm for global optimization and constrained engineering problems: case study on MLP classification problems Innovative solution suggestions for financing electric vehicle charging infrastructure investments with a novel artificial intelligence-based fuzzy decision-making modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1