利用机器学习分析聚合物混合物生成的原子力显微镜 (AFM) 图像

Aanish Paruchuri, Yunfei Wang, Xiaodan Gu, Arthi Jayaraman
{"title":"利用机器学习分析聚合物混合物生成的原子力显微镜 (AFM) 图像","authors":"Aanish Paruchuri, Yunfei Wang, Xiaodan Gu, Arthi Jayaraman","doi":"arxiv-2409.11438","DOIUrl":null,"url":null,"abstract":"In this paper we present a new machine learning workflow with unsupervised\nlearning techniques to identify domains within atomic force microscopy images\nobtained from polymer films. The goal of the workflow is to identify the\nspatial location of the two types of polymer domains with little to no manual\nintervention and calculate the domain size distributions which in turn can help\nqualify the phase separated state of the material as macrophase or microphase\nordered or disordered domains. We briefly review existing approaches used in\nother fields, computer vision and signal processing that can be applicable for\nthe above tasks that happen frequently in the field of polymer science and\nengineering. We then test these approaches from computer vision and signal\nprocessing on the AFM image dataset to identify the strengths and limitations\nof each of these approaches for our first task. For our first domain\nsegmentation task, we found that the workflow using discrete Fourier transform\nor discrete cosine transform with variance statistics as the feature works the\nbest. The popular ResNet50 deep learning approach from computer vision field\nexhibited relatively poorer performance in the domain segmentation task for our\nAFM images as compared to the DFT and DCT based workflows. For the second task,\nfor each of 144 input AFM images, we then used an existing porespy python\npackage to calculate the domain size distribution from the output of that image\nfrom DFT based workflow. The information and open source codes we share in this\npaper can serve as a guide for researchers in the polymer and soft materials\nfields who need ML modeling and workflows for automated analyses of AFM images\nfrom polymer samples that may have crystalline or amorphous domains, sharp or\nrough interfaces between domains, or micro or macrophase separated domains.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Analyzing Atomic Force Microscopy (AFM) Images Generated from Polymer Blends\",\"authors\":\"Aanish Paruchuri, Yunfei Wang, Xiaodan Gu, Arthi Jayaraman\",\"doi\":\"arxiv-2409.11438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new machine learning workflow with unsupervised\\nlearning techniques to identify domains within atomic force microscopy images\\nobtained from polymer films. The goal of the workflow is to identify the\\nspatial location of the two types of polymer domains with little to no manual\\nintervention and calculate the domain size distributions which in turn can help\\nqualify the phase separated state of the material as macrophase or microphase\\nordered or disordered domains. We briefly review existing approaches used in\\nother fields, computer vision and signal processing that can be applicable for\\nthe above tasks that happen frequently in the field of polymer science and\\nengineering. We then test these approaches from computer vision and signal\\nprocessing on the AFM image dataset to identify the strengths and limitations\\nof each of these approaches for our first task. For our first domain\\nsegmentation task, we found that the workflow using discrete Fourier transform\\nor discrete cosine transform with variance statistics as the feature works the\\nbest. The popular ResNet50 deep learning approach from computer vision field\\nexhibited relatively poorer performance in the domain segmentation task for our\\nAFM images as compared to the DFT and DCT based workflows. For the second task,\\nfor each of 144 input AFM images, we then used an existing porespy python\\npackage to calculate the domain size distribution from the output of that image\\nfrom DFT based workflow. The information and open source codes we share in this\\npaper can serve as a guide for researchers in the polymer and soft materials\\nfields who need ML modeling and workflows for automated analyses of AFM images\\nfrom polymer samples that may have crystalline or amorphous domains, sharp or\\nrough interfaces between domains, or micro or macrophase separated domains.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种新的机器学习工作流程,它采用无监督学习技术来识别聚合物薄膜原子力显微镜图像中的畴。该工作流程的目标是在几乎不需要人工干预的情况下识别两种类型聚合物畴的空间位置,并计算畴的尺寸分布,进而帮助将材料的相分离状态鉴定为巨相、微相有序畴或无序畴。我们简要回顾了在其他领域、计算机视觉和信号处理中使用的现有方法,这些方法可用于聚合物科学与工程领域中经常出现的上述任务。然后,我们在原子力显微镜图像数据集上测试了这些计算机视觉和信号处理方法,以确定每种方法在第一项任务中的优势和局限性。对于我们的第一个领域分割任务,我们发现使用离散傅里叶变换或离散余弦变换与方差统计作为特征的工作流程效果最好。与基于离散傅立叶变换和离散余弦变换的工作流程相比,计算机视觉领域流行的 ResNet50 深度学习方法在 AFM 图像的域分割任务中表现相对较差。在第二项任务中,对于 144 幅输入 AFM 图像中的每一幅图像,我们都使用现有的 porespy python 程序包来计算基于 DFT 工作流程的图像输出中的畴大小分布。我们在本文中分享的信息和开放源代码可为聚合物和软材料领域的研究人员提供指导,这些研究人员需要 ML 建模和工作流,以便自动分析来自聚合物样品的 AFM 图像,这些样品可能具有结晶或无定形结构域、结构域之间的尖锐或穿透界面,或微观或宏观相分离结构域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for Analyzing Atomic Force Microscopy (AFM) Images Generated from Polymer Blends
In this paper we present a new machine learning workflow with unsupervised learning techniques to identify domains within atomic force microscopy images obtained from polymer films. The goal of the workflow is to identify the spatial location of the two types of polymer domains with little to no manual intervention and calculate the domain size distributions which in turn can help qualify the phase separated state of the material as macrophase or microphase ordered or disordered domains. We briefly review existing approaches used in other fields, computer vision and signal processing that can be applicable for the above tasks that happen frequently in the field of polymer science and engineering. We then test these approaches from computer vision and signal processing on the AFM image dataset to identify the strengths and limitations of each of these approaches for our first task. For our first domain segmentation task, we found that the workflow using discrete Fourier transform or discrete cosine transform with variance statistics as the feature works the best. The popular ResNet50 deep learning approach from computer vision field exhibited relatively poorer performance in the domain segmentation task for our AFM images as compared to the DFT and DCT based workflows. For the second task, for each of 144 input AFM images, we then used an existing porespy python package to calculate the domain size distribution from the output of that image from DFT based workflow. The information and open source codes we share in this paper can serve as a guide for researchers in the polymer and soft materials fields who need ML modeling and workflows for automated analyses of AFM images from polymer samples that may have crystalline or amorphous domains, sharp or rough interfaces between domains, or micro or macrophase separated domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1