Shiyuan He , Chunxiang Chen , Shouqiang Wan , Wei Lu , Ronglin Yang , Shiyi Zhao
{"title":"在金属有机框架衍生催化剂作用下微波协同热解小球藻和茶油籽残渣","authors":"Shiyuan He , Chunxiang Chen , Shouqiang Wan , Wei Lu , Ronglin Yang , Shiyi Zhao","doi":"10.1016/j.jaap.2024.106772","DOIUrl":null,"url":null,"abstract":"<div><p>The co-pyrolysis of <em>Chlorella vulgaris</em> (CV) and tea oilseed residue (TR) is beneficial for improving the pyrolysis characteristics and bio-oil quality. In this study, the effects of different added amounts (5 %, 10 %, 15 %, and 20 %) of metal-organic frameworks (MOFs) derived catalysts (Cu/C, Co/C, Cu-Co/C) on the co-pyrolysis of CV and TR were investigated using microwave pyrolysis oven. The results showed that the MOFs derived catalysts improved the co-pyrolysis reaction; the maximum average reaction rate (<em>R</em><sub>v</sub>, 0.02466 wt%/s), and the minimum reaction time (<em>T</em><sub>s</sub>, 2900 s) were obtained at 20 % Cu-Co/C. In addition, 15 % Co/C obtained the highest bio-oil yield, which reached 23.26 wt%. In the case of bio-char, the highest yield (29.83 wt%) was obtained at 5 % Cu-Co/C. Finally, GC-MS analysis showed that compared to C1T1 (CV:TR = 1:1), the Cu/C and Cu-Co/C catalysts increased the hydrocarbon content in bio-oil by 7.68 % and 9.68 % respectively, while reducing the contents of phenols and amines, whereas Co/C reduced the ester content of bio-oil by 19.14 %.</p></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106772"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave co-pyrolysis of Chlorella vulgaris and tea oilseed residues under metal-organic frameworks derived catalysts\",\"authors\":\"Shiyuan He , Chunxiang Chen , Shouqiang Wan , Wei Lu , Ronglin Yang , Shiyi Zhao\",\"doi\":\"10.1016/j.jaap.2024.106772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The co-pyrolysis of <em>Chlorella vulgaris</em> (CV) and tea oilseed residue (TR) is beneficial for improving the pyrolysis characteristics and bio-oil quality. In this study, the effects of different added amounts (5 %, 10 %, 15 %, and 20 %) of metal-organic frameworks (MOFs) derived catalysts (Cu/C, Co/C, Cu-Co/C) on the co-pyrolysis of CV and TR were investigated using microwave pyrolysis oven. The results showed that the MOFs derived catalysts improved the co-pyrolysis reaction; the maximum average reaction rate (<em>R</em><sub>v</sub>, 0.02466 wt%/s), and the minimum reaction time (<em>T</em><sub>s</sub>, 2900 s) were obtained at 20 % Cu-Co/C. In addition, 15 % Co/C obtained the highest bio-oil yield, which reached 23.26 wt%. In the case of bio-char, the highest yield (29.83 wt%) was obtained at 5 % Cu-Co/C. Finally, GC-MS analysis showed that compared to C1T1 (CV:TR = 1:1), the Cu/C and Cu-Co/C catalysts increased the hydrocarbon content in bio-oil by 7.68 % and 9.68 % respectively, while reducing the contents of phenols and amines, whereas Co/C reduced the ester content of bio-oil by 19.14 %.</p></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106772\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237024004273\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004273","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Microwave co-pyrolysis of Chlorella vulgaris and tea oilseed residues under metal-organic frameworks derived catalysts
The co-pyrolysis of Chlorella vulgaris (CV) and tea oilseed residue (TR) is beneficial for improving the pyrolysis characteristics and bio-oil quality. In this study, the effects of different added amounts (5 %, 10 %, 15 %, and 20 %) of metal-organic frameworks (MOFs) derived catalysts (Cu/C, Co/C, Cu-Co/C) on the co-pyrolysis of CV and TR were investigated using microwave pyrolysis oven. The results showed that the MOFs derived catalysts improved the co-pyrolysis reaction; the maximum average reaction rate (Rv, 0.02466 wt%/s), and the minimum reaction time (Ts, 2900 s) were obtained at 20 % Cu-Co/C. In addition, 15 % Co/C obtained the highest bio-oil yield, which reached 23.26 wt%. In the case of bio-char, the highest yield (29.83 wt%) was obtained at 5 % Cu-Co/C. Finally, GC-MS analysis showed that compared to C1T1 (CV:TR = 1:1), the Cu/C and Cu-Co/C catalysts increased the hydrocarbon content in bio-oil by 7.68 % and 9.68 % respectively, while reducing the contents of phenols and amines, whereas Co/C reduced the ester content of bio-oil by 19.14 %.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.