{"title":"脱分化和老化导致血管平滑肌细胞丧失机械收缩性和极性:连续培养中细胞宏观和微观行为的异质性变化","authors":"Kazuaki Nagayama, Kenzo Nogami, Shunta Sugano, Miku Nakazawa","doi":"10.1016/j.jmbbm.2024.106744","DOIUrl":null,"url":null,"abstract":"<div><p>Dedifferentiation and aging of vascular smooth muscle cells (VSMCs) are associated with serious vascular diseases, such as arteriosclerosis and aneurysm. However, how cell dedifferentiation and aging affect cellular mechanical behaviors at the single-cell and intracellular structure levels remains unclear. An in-depth understanding of these interactions is extremely important for understanding the mechanism underlying VSMC mechanical integrity and homeostatic regulation of vascular walls. Herein, we systematically investigated changes in VSMC morphology, structure, contractility, and motility during dedifferentiation and aging induced by serial passage culture using traction force microscopy with elastic micropillar substrates, laser nanodissection of cytoskeletons, confocal fluorescence microscopy, and atomic force microscopy. We found that VSMC dedifferentiation started in the middle stage of serial passage culture, accompanied by a transient cell spreading in the cell width and decrease in contractile protein expression. Dedifferentiated VSMCs showed a significant decrease in the contraction and stiffness of individual actin stress fibers; however, their overall cell traction forces were maintained. Simultaneously, a significant increase in cell motility and the number of actin fibers was observed in dedifferentiated VSMCs, which may be associated with the enhancement of cell migration and disruption of cell/tissue integrity during the early stage of vascular diseases. As cell senescence progressed in the later stage of serial passage culture, VSMCs displayed reduced cell spreading and migration with decrease in the overall cell traction forces and drastic reduction in mechanical polarity of cell structures and forces. These results suggested that cell senescence causes loss of mechanical contractility and polarity in VSMCs, which may be an important factor in vascular disease progression. The experimental systems established in this study can be powerful tools for understanding the mechanisms underlying cellular dedifferentiation and aging from a biomechanical perspective.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106744"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dedifferentiation- and aging-induced loss of mechanical contractility and polarity in vascular smooth muscle cells: Heterogeneous changes in macroscopic and microscopic behavior of cells in serial passage culture\",\"authors\":\"Kazuaki Nagayama, Kenzo Nogami, Shunta Sugano, Miku Nakazawa\",\"doi\":\"10.1016/j.jmbbm.2024.106744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dedifferentiation and aging of vascular smooth muscle cells (VSMCs) are associated with serious vascular diseases, such as arteriosclerosis and aneurysm. However, how cell dedifferentiation and aging affect cellular mechanical behaviors at the single-cell and intracellular structure levels remains unclear. An in-depth understanding of these interactions is extremely important for understanding the mechanism underlying VSMC mechanical integrity and homeostatic regulation of vascular walls. Herein, we systematically investigated changes in VSMC morphology, structure, contractility, and motility during dedifferentiation and aging induced by serial passage culture using traction force microscopy with elastic micropillar substrates, laser nanodissection of cytoskeletons, confocal fluorescence microscopy, and atomic force microscopy. We found that VSMC dedifferentiation started in the middle stage of serial passage culture, accompanied by a transient cell spreading in the cell width and decrease in contractile protein expression. Dedifferentiated VSMCs showed a significant decrease in the contraction and stiffness of individual actin stress fibers; however, their overall cell traction forces were maintained. Simultaneously, a significant increase in cell motility and the number of actin fibers was observed in dedifferentiated VSMCs, which may be associated with the enhancement of cell migration and disruption of cell/tissue integrity during the early stage of vascular diseases. As cell senescence progressed in the later stage of serial passage culture, VSMCs displayed reduced cell spreading and migration with decrease in the overall cell traction forces and drastic reduction in mechanical polarity of cell structures and forces. These results suggested that cell senescence causes loss of mechanical contractility and polarity in VSMCs, which may be an important factor in vascular disease progression. The experimental systems established in this study can be powerful tools for understanding the mechanisms underlying cellular dedifferentiation and aging from a biomechanical perspective.</p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106744\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175161612400376X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612400376X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Dedifferentiation- and aging-induced loss of mechanical contractility and polarity in vascular smooth muscle cells: Heterogeneous changes in macroscopic and microscopic behavior of cells in serial passage culture
Dedifferentiation and aging of vascular smooth muscle cells (VSMCs) are associated with serious vascular diseases, such as arteriosclerosis and aneurysm. However, how cell dedifferentiation and aging affect cellular mechanical behaviors at the single-cell and intracellular structure levels remains unclear. An in-depth understanding of these interactions is extremely important for understanding the mechanism underlying VSMC mechanical integrity and homeostatic regulation of vascular walls. Herein, we systematically investigated changes in VSMC morphology, structure, contractility, and motility during dedifferentiation and aging induced by serial passage culture using traction force microscopy with elastic micropillar substrates, laser nanodissection of cytoskeletons, confocal fluorescence microscopy, and atomic force microscopy. We found that VSMC dedifferentiation started in the middle stage of serial passage culture, accompanied by a transient cell spreading in the cell width and decrease in contractile protein expression. Dedifferentiated VSMCs showed a significant decrease in the contraction and stiffness of individual actin stress fibers; however, their overall cell traction forces were maintained. Simultaneously, a significant increase in cell motility and the number of actin fibers was observed in dedifferentiated VSMCs, which may be associated with the enhancement of cell migration and disruption of cell/tissue integrity during the early stage of vascular diseases. As cell senescence progressed in the later stage of serial passage culture, VSMCs displayed reduced cell spreading and migration with decrease in the overall cell traction forces and drastic reduction in mechanical polarity of cell structures and forces. These results suggested that cell senescence causes loss of mechanical contractility and polarity in VSMCs, which may be an important factor in vascular disease progression. The experimental systems established in this study can be powerful tools for understanding the mechanisms underlying cellular dedifferentiation and aging from a biomechanical perspective.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.