{"title":"用于图像字幕的三流共用循环变压器网络","authors":"Jianchao Li, Wei Zhou, Kai Wang, Haifeng Hu","doi":"10.1016/j.cviu.2024.104165","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional image captioning methods only have a local perspective at the dataset level, allowing them to explore dispersed information within individual images. However, the lack of a global perspective prevents them from capturing common characteristics among similar images. To address the limitation, this paper introduces a novel <strong>T</strong>riple-stream <strong>C</strong>ommonsense <strong>C</strong>irculating <strong>T</strong>ransformer <strong>N</strong>etwork (TCCTN). It incorporates contextual stream into the encoder, combining enhanced channel stream and spatial stream for comprehensive feature learning. The proposed commonsense-aware contextual attention (CCA) module queries commonsense contextual features from the dataset, obtaining global contextual association information by projecting grid features into the contextual space. The pure semantic channel attention (PSCA) module leverages compressed spatial domain for channel pooling, focusing on attention weights of pure channel features to capture inherent semantic features. The region spatial attention (RSA) module enhances spatial concepts in semantic learning by incorporating region position information. Furthermore, leveraging the complementary differences among the three features, TCCTN introduces the mixture of experts strategy to enhance the unique discriminative ability of features and promote their integration in textual feature learning. Extensive experiments on the MS-COCO dataset demonstrate the effectiveness of contextual commonsense stream and the superior performance of TCCTN.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104165"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple-Stream Commonsense Circulation Transformer Network for Image Captioning\",\"authors\":\"Jianchao Li, Wei Zhou, Kai Wang, Haifeng Hu\",\"doi\":\"10.1016/j.cviu.2024.104165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional image captioning methods only have a local perspective at the dataset level, allowing them to explore dispersed information within individual images. However, the lack of a global perspective prevents them from capturing common characteristics among similar images. To address the limitation, this paper introduces a novel <strong>T</strong>riple-stream <strong>C</strong>ommonsense <strong>C</strong>irculating <strong>T</strong>ransformer <strong>N</strong>etwork (TCCTN). It incorporates contextual stream into the encoder, combining enhanced channel stream and spatial stream for comprehensive feature learning. The proposed commonsense-aware contextual attention (CCA) module queries commonsense contextual features from the dataset, obtaining global contextual association information by projecting grid features into the contextual space. The pure semantic channel attention (PSCA) module leverages compressed spatial domain for channel pooling, focusing on attention weights of pure channel features to capture inherent semantic features. The region spatial attention (RSA) module enhances spatial concepts in semantic learning by incorporating region position information. Furthermore, leveraging the complementary differences among the three features, TCCTN introduces the mixture of experts strategy to enhance the unique discriminative ability of features and promote their integration in textual feature learning. Extensive experiments on the MS-COCO dataset demonstrate the effectiveness of contextual commonsense stream and the superior performance of TCCTN.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"249 \",\"pages\":\"Article 104165\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002467\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002467","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Triple-Stream Commonsense Circulation Transformer Network for Image Captioning
Traditional image captioning methods only have a local perspective at the dataset level, allowing them to explore dispersed information within individual images. However, the lack of a global perspective prevents them from capturing common characteristics among similar images. To address the limitation, this paper introduces a novel Triple-stream Commonsense Circulating Transformer Network (TCCTN). It incorporates contextual stream into the encoder, combining enhanced channel stream and spatial stream for comprehensive feature learning. The proposed commonsense-aware contextual attention (CCA) module queries commonsense contextual features from the dataset, obtaining global contextual association information by projecting grid features into the contextual space. The pure semantic channel attention (PSCA) module leverages compressed spatial domain for channel pooling, focusing on attention weights of pure channel features to capture inherent semantic features. The region spatial attention (RSA) module enhances spatial concepts in semantic learning by incorporating region position information. Furthermore, leveraging the complementary differences among the three features, TCCTN introduces the mixture of experts strategy to enhance the unique discriminative ability of features and promote their integration in textual feature learning. Extensive experiments on the MS-COCO dataset demonstrate the effectiveness of contextual commonsense stream and the superior performance of TCCTN.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems