{"title":"用于高光谱图像重建的渐进式 CNN 变压器交替重建网络--赤潮检测案例研究","authors":"","doi":"10.1016/j.jag.2024.104129","DOIUrl":null,"url":null,"abstract":"<div><p>Spectral reconstruction technology extracts rich detail information from limited spectral bands, thereby enhancing both of the image quality and the resolution capabilities. It finds application in non-destructive testing, elevating the precision and robustness of detection. Current studies primarily focus on improving the local information perception of convolutional neural networks or modeling long-distance dependencies with Transformer. However, such approaches fail to effectively integrate global–local modeling information, resulting in poor accuracy in image reconstruction. This paper introduces a Progressive CNN-Transformer Alternating Reconstruction Network (PCTARN) to alternately utilize robust convolutional attention and transpose Transformer self-attention. A Dual-Path CNN-Transformer Alternating Reconstruction Module (DPCTARM) is proposed to dynamically introduce global–local dynamic priors at various levels to facilitate extracting high- and low-frequency features. This enhancement effectively strengthens PCTARN’s capability to discern valuable signals. To verify the proposed method, a spectral dataset based on seven selected red tide algae is collected. And a peak signal-to-noise ratio (PSNR) metric of 34.58 dB is achieved, which is at least 0.44 dB higher than the methods such as MAUN and MST++. While the Params and FLOPS are reduced by over 41.9 % and 38.4 %, respectively. Since the performance of the proposed PCTARN depends not only on image quality but also on spectral fidelity, an application of spectral detection on red tide are conducted for this purpose. Four feature bands are selected from multispectral images and reconstructed into 20-band hyperspectral images by using PCTARN. Species identification and cell concentration detection are conducted based on the reconstructed images. The results demonstrate that PCTARN can enhance the spatial signal and spectral peak differences of red tide samples, achieving an identification accuracy of 94.21 % and a coefficient of determination (<em>R2</em>) of 0.9660 in species identification and cell concentration detection, which are respectively improved by 11.55 % and 11.59 % compared to those of 4-band multispectral detection.</p></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569843224004837/pdfft?md5=7f5f8d8f265f219c5e89890c6de11614&pid=1-s2.0-S1569843224004837-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Progressive CNN-transformer alternating reconstruction network for hyperspectral image reconstruction—A case study in red tide detection\",\"authors\":\"\",\"doi\":\"10.1016/j.jag.2024.104129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spectral reconstruction technology extracts rich detail information from limited spectral bands, thereby enhancing both of the image quality and the resolution capabilities. It finds application in non-destructive testing, elevating the precision and robustness of detection. Current studies primarily focus on improving the local information perception of convolutional neural networks or modeling long-distance dependencies with Transformer. However, such approaches fail to effectively integrate global–local modeling information, resulting in poor accuracy in image reconstruction. This paper introduces a Progressive CNN-Transformer Alternating Reconstruction Network (PCTARN) to alternately utilize robust convolutional attention and transpose Transformer self-attention. A Dual-Path CNN-Transformer Alternating Reconstruction Module (DPCTARM) is proposed to dynamically introduce global–local dynamic priors at various levels to facilitate extracting high- and low-frequency features. This enhancement effectively strengthens PCTARN’s capability to discern valuable signals. To verify the proposed method, a spectral dataset based on seven selected red tide algae is collected. And a peak signal-to-noise ratio (PSNR) metric of 34.58 dB is achieved, which is at least 0.44 dB higher than the methods such as MAUN and MST++. While the Params and FLOPS are reduced by over 41.9 % and 38.4 %, respectively. Since the performance of the proposed PCTARN depends not only on image quality but also on spectral fidelity, an application of spectral detection on red tide are conducted for this purpose. Four feature bands are selected from multispectral images and reconstructed into 20-band hyperspectral images by using PCTARN. Species identification and cell concentration detection are conducted based on the reconstructed images. The results demonstrate that PCTARN can enhance the spatial signal and spectral peak differences of red tide samples, achieving an identification accuracy of 94.21 % and a coefficient of determination (<em>R2</em>) of 0.9660 in species identification and cell concentration detection, which are respectively improved by 11.55 % and 11.59 % compared to those of 4-band multispectral detection.</p></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569843224004837/pdfft?md5=7f5f8d8f265f219c5e89890c6de11614&pid=1-s2.0-S1569843224004837-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224004837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224004837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Progressive CNN-transformer alternating reconstruction network for hyperspectral image reconstruction—A case study in red tide detection
Spectral reconstruction technology extracts rich detail information from limited spectral bands, thereby enhancing both of the image quality and the resolution capabilities. It finds application in non-destructive testing, elevating the precision and robustness of detection. Current studies primarily focus on improving the local information perception of convolutional neural networks or modeling long-distance dependencies with Transformer. However, such approaches fail to effectively integrate global–local modeling information, resulting in poor accuracy in image reconstruction. This paper introduces a Progressive CNN-Transformer Alternating Reconstruction Network (PCTARN) to alternately utilize robust convolutional attention and transpose Transformer self-attention. A Dual-Path CNN-Transformer Alternating Reconstruction Module (DPCTARM) is proposed to dynamically introduce global–local dynamic priors at various levels to facilitate extracting high- and low-frequency features. This enhancement effectively strengthens PCTARN’s capability to discern valuable signals. To verify the proposed method, a spectral dataset based on seven selected red tide algae is collected. And a peak signal-to-noise ratio (PSNR) metric of 34.58 dB is achieved, which is at least 0.44 dB higher than the methods such as MAUN and MST++. While the Params and FLOPS are reduced by over 41.9 % and 38.4 %, respectively. Since the performance of the proposed PCTARN depends not only on image quality but also on spectral fidelity, an application of spectral detection on red tide are conducted for this purpose. Four feature bands are selected from multispectral images and reconstructed into 20-band hyperspectral images by using PCTARN. Species identification and cell concentration detection are conducted based on the reconstructed images. The results demonstrate that PCTARN can enhance the spatial signal and spectral peak differences of red tide samples, achieving an identification accuracy of 94.21 % and a coefficient of determination (R2) of 0.9660 in species identification and cell concentration detection, which are respectively improved by 11.55 % and 11.59 % compared to those of 4-band multispectral detection.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.