政府大数据生态系统("datagov.eco")概念框架

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-09-05 DOI:10.1016/j.datak.2024.102348
Syed Iftikhar Hussain Shah , Vassilios Peristeras , Ioannis Magnisalis
{"title":"政府大数据生态系统(\"datagov.eco\")概念框架","authors":"Syed Iftikhar Hussain Shah ,&nbsp;Vassilios Peristeras ,&nbsp;Ioannis Magnisalis","doi":"10.1016/j.datak.2024.102348","DOIUrl":null,"url":null,"abstract":"<div><p>The public sector, private firms, and civil society constantly create data of high volume, velocity, and veracity from diverse sources. This kind of data is known as big data. As in other industries, public administrations consider big data as the “new oil\" and employ data-centric policies to transform data into knowledge, stimulate good governance, innovative digital services, transparency, and citizens' engagement in public policy. More and more public organizations understand the value created by exploiting internal and external data sources, delivering new capabilities, and fostering collaboration inside and outside of public administrations. Despite the broad interest in this ecosystem, we still lack a detailed and systematic view of it. In this paper, we attempt to describe the emerging Government Big Data Ecosystem as a <em>socio-technical network</em> of people, organizations, processes, technology, infrastructure, standards &amp; policies, procedures, and resources. This ecosystem supports <em>data functions</em> such as data collection, integration, analysis, storage, sharing, use, protection, and archiving. Through these functions, <em>value is created</em> by promoting evidence-based policymaking, modern public services delivery, data-driven administration and open government, and boosting the data economy. Through a Design Science Research methodology, we propose a conceptual framework, which we call ‘datagov.eco’. We believe our ‘datagov.eco’ framework will provide insights and support to different stakeholders’ profiles, including administrators, consultants, data engineers, and data scientists.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"154 ","pages":"Article 102348"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A conceptual framework for the government big data ecosystem (‘datagov.eco’)\",\"authors\":\"Syed Iftikhar Hussain Shah ,&nbsp;Vassilios Peristeras ,&nbsp;Ioannis Magnisalis\",\"doi\":\"10.1016/j.datak.2024.102348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The public sector, private firms, and civil society constantly create data of high volume, velocity, and veracity from diverse sources. This kind of data is known as big data. As in other industries, public administrations consider big data as the “new oil\\\" and employ data-centric policies to transform data into knowledge, stimulate good governance, innovative digital services, transparency, and citizens' engagement in public policy. More and more public organizations understand the value created by exploiting internal and external data sources, delivering new capabilities, and fostering collaboration inside and outside of public administrations. Despite the broad interest in this ecosystem, we still lack a detailed and systematic view of it. In this paper, we attempt to describe the emerging Government Big Data Ecosystem as a <em>socio-technical network</em> of people, organizations, processes, technology, infrastructure, standards &amp; policies, procedures, and resources. This ecosystem supports <em>data functions</em> such as data collection, integration, analysis, storage, sharing, use, protection, and archiving. Through these functions, <em>value is created</em> by promoting evidence-based policymaking, modern public services delivery, data-driven administration and open government, and boosting the data economy. Through a Design Science Research methodology, we propose a conceptual framework, which we call ‘datagov.eco’. We believe our ‘datagov.eco’ framework will provide insights and support to different stakeholders’ profiles, including administrators, consultants, data engineers, and data scientists.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"154 \",\"pages\":\"Article 102348\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000727\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000727","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

公共部门、私营企业和民间社会不断从各种来源创建大量、高速和真实的数据。这类数据被称为大数据。与其他行业一样,公共管理部门将大数据视为 "新石油",并采用以数据为中心的政策,将数据转化为知识,促进善治、创新数字服务、透明度和公民参与公共政策。越来越多的公共组织认识到利用内部和外部数据源、提供新能力以及促进公共管理部门内外协作所创造的价值。尽管这一生态系统受到广泛关注,但我们仍然缺乏对其详细而系统的了解。在本文中,我们试图将新兴的政府大数据生态系统描述为一个由人员、组织、流程、技术、基础设施、标准&amp、政策、程序和资源组成的社会技术网络。该生态系统支持数据功能,如数据收集、整合、分析、存储、共享、使用、保护和归档。通过这些功能,可以促进循证决策、现代公共服务交付、数据驱动的行政管理和开放式政府,并推动数据经济的发展,从而创造价值。通过设计科学研究方法,我们提出了一个概念框架,我们称之为 "datagov.eco"。我们相信,我们的 "datagov.eco "框架将为不同利益相关者(包括管理者、顾问、数据工程师和数据科学家)提供见解和支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A conceptual framework for the government big data ecosystem (‘datagov.eco’)

The public sector, private firms, and civil society constantly create data of high volume, velocity, and veracity from diverse sources. This kind of data is known as big data. As in other industries, public administrations consider big data as the “new oil" and employ data-centric policies to transform data into knowledge, stimulate good governance, innovative digital services, transparency, and citizens' engagement in public policy. More and more public organizations understand the value created by exploiting internal and external data sources, delivering new capabilities, and fostering collaboration inside and outside of public administrations. Despite the broad interest in this ecosystem, we still lack a detailed and systematic view of it. In this paper, we attempt to describe the emerging Government Big Data Ecosystem as a socio-technical network of people, organizations, processes, technology, infrastructure, standards & policies, procedures, and resources. This ecosystem supports data functions such as data collection, integration, analysis, storage, sharing, use, protection, and archiving. Through these functions, value is created by promoting evidence-based policymaking, modern public services delivery, data-driven administration and open government, and boosting the data economy. Through a Design Science Research methodology, we propose a conceptual framework, which we call ‘datagov.eco’. We believe our ‘datagov.eco’ framework will provide insights and support to different stakeholders’ profiles, including administrators, consultants, data engineers, and data scientists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
White box specification of intervention policies for prescriptive process monitoring A goal-oriented document-grounded dialogue based on evidence generation Data-aware process models: From soundness checking to repair Context normalization: A new approach for the stability and improvement of neural network performance An assessment taxonomy for self-adaptation business process solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1