Siyu Liu , Xiaoqiang Du , Ziyan Chen , Ruying Zhou , Hongqi Wang , Xin Mao , Jiahe Du , Guitao Zhang , Hui Li , Yizhi Song , Lirong Chang , Yan Wu
{"title":"激活星形胶质细胞的 NMDA 受体可抵消 Aβ 诱导的海马星形胶质细胞 BDNF 的减少以及 GFAP 和补体 3 的增加","authors":"Siyu Liu , Xiaoqiang Du , Ziyan Chen , Ruying Zhou , Hongqi Wang , Xin Mao , Jiahe Du , Guitao Zhang , Hui Li , Yizhi Song , Lirong Chang , Yan Wu","doi":"10.1016/j.neuroscience.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><p>N-methyl-D-aspartate receptors (NMDARs) play a crucial role in mediating Amyloid-β (Aβ) synaptotoxicity. Our previous studies have demonstrated an opposite (neuroprotection and neurotoxicity) effect of activating astrocytic and neuronal NMDARs with higher dose (10 μM) of NMDA, an agonist of NMDARs. By contrast, activating neuronal or astrocyitc NMDARs with lower dose (1 μM) of NMDA both exerts neuroprotective effect in Aβ-induced neurotoxicity. However, the underlying mechanism of activating astrocytic NMDARs with lower dose of NMDA to protect against Aβ neurotoxicity remains unclear. Based on our previous related work, in this study, using a co-cultured cell model of primary hippocampal neurons and astrocytes, we further investigated the possible factors involved in 1 μM of NMDA activating astrocytic NMDARs to oppose Aβ-induced synaptotoxicity. Our results showed that activation of astrocytic NMDARs by 1 μM NMDA rescued Aβ-induced reduction of brain-derived neurotrophic factor (BDNF), and inhibited Aβ-induced increase of GFAP, complement 3 (C3) and activation of NF-κB. Furthermore, blockade of astrocytic GluN2A with TCN201 abrogated the ability of 1 μM NMDA to counteract the effects of Aβ decreasing BDNF, and increasing GFAP, C3 and activation of NF-κB. These findings suggest that activation of astrocytic NMDARs protect against Aβ-induced synaptotoxicity probably through elevating BDNF and suppressing GFAP and C3. Our present research provides valuable insights for elucidating the underlying mechanism of astrocytic NMDARs activation resisting the toxic effects of Aβ.</p></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of astrocytic NMDA receptors counteracted Aβ-induced reduction of BDNF and elevation of GFAP and complement 3 in the hippocampal astrocytes\",\"authors\":\"Siyu Liu , Xiaoqiang Du , Ziyan Chen , Ruying Zhou , Hongqi Wang , Xin Mao , Jiahe Du , Guitao Zhang , Hui Li , Yizhi Song , Lirong Chang , Yan Wu\",\"doi\":\"10.1016/j.neuroscience.2024.09.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>N-methyl-D-aspartate receptors (NMDARs) play a crucial role in mediating Amyloid-β (Aβ) synaptotoxicity. Our previous studies have demonstrated an opposite (neuroprotection and neurotoxicity) effect of activating astrocytic and neuronal NMDARs with higher dose (10 μM) of NMDA, an agonist of NMDARs. By contrast, activating neuronal or astrocyitc NMDARs with lower dose (1 μM) of NMDA both exerts neuroprotective effect in Aβ-induced neurotoxicity. However, the underlying mechanism of activating astrocytic NMDARs with lower dose of NMDA to protect against Aβ neurotoxicity remains unclear. Based on our previous related work, in this study, using a co-cultured cell model of primary hippocampal neurons and astrocytes, we further investigated the possible factors involved in 1 μM of NMDA activating astrocytic NMDARs to oppose Aβ-induced synaptotoxicity. Our results showed that activation of astrocytic NMDARs by 1 μM NMDA rescued Aβ-induced reduction of brain-derived neurotrophic factor (BDNF), and inhibited Aβ-induced increase of GFAP, complement 3 (C3) and activation of NF-κB. Furthermore, blockade of astrocytic GluN2A with TCN201 abrogated the ability of 1 μM NMDA to counteract the effects of Aβ decreasing BDNF, and increasing GFAP, C3 and activation of NF-κB. These findings suggest that activation of astrocytic NMDARs protect against Aβ-induced synaptotoxicity probably through elevating BDNF and suppressing GFAP and C3. Our present research provides valuable insights for elucidating the underlying mechanism of astrocytic NMDARs activation resisting the toxic effects of Aβ.</p></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452224004718\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224004718","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Activation of astrocytic NMDA receptors counteracted Aβ-induced reduction of BDNF and elevation of GFAP and complement 3 in the hippocampal astrocytes
N-methyl-D-aspartate receptors (NMDARs) play a crucial role in mediating Amyloid-β (Aβ) synaptotoxicity. Our previous studies have demonstrated an opposite (neuroprotection and neurotoxicity) effect of activating astrocytic and neuronal NMDARs with higher dose (10 μM) of NMDA, an agonist of NMDARs. By contrast, activating neuronal or astrocyitc NMDARs with lower dose (1 μM) of NMDA both exerts neuroprotective effect in Aβ-induced neurotoxicity. However, the underlying mechanism of activating astrocytic NMDARs with lower dose of NMDA to protect against Aβ neurotoxicity remains unclear. Based on our previous related work, in this study, using a co-cultured cell model of primary hippocampal neurons and astrocytes, we further investigated the possible factors involved in 1 μM of NMDA activating astrocytic NMDARs to oppose Aβ-induced synaptotoxicity. Our results showed that activation of astrocytic NMDARs by 1 μM NMDA rescued Aβ-induced reduction of brain-derived neurotrophic factor (BDNF), and inhibited Aβ-induced increase of GFAP, complement 3 (C3) and activation of NF-κB. Furthermore, blockade of astrocytic GluN2A with TCN201 abrogated the ability of 1 μM NMDA to counteract the effects of Aβ decreasing BDNF, and increasing GFAP, C3 and activation of NF-κB. These findings suggest that activation of astrocytic NMDARs protect against Aβ-induced synaptotoxicity probably through elevating BDNF and suppressing GFAP and C3. Our present research provides valuable insights for elucidating the underlying mechanism of astrocytic NMDARs activation resisting the toxic effects of Aβ.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.