{"title":"基于微观特征的千年古砖力学行为研究","authors":"Jianwei Yue , Mengen Yue , Yage Zhang , Jiachang Chen , Liangshuai Zhang , Yang Lei , Shaopeng Xu , Haonan Zhang","doi":"10.1016/j.matdes.2024.113330","DOIUrl":null,"url":null,"abstract":"<div><p>The wide performance variation and inability for destructive testing make accurately determining ancient brick mechanical properties crucial for assessing structural safety in ancient masonry. This paper uses multiscale modeling with microscopic finite element analysis to quantitatively assess ancient brick macroscopic stress–strain relationship and compressive strength based on microstructural characteristics. The basic parameters such as porosity, pore size distribution, mineral composition and volume ratio, and microstructure characteristics of ancient bricks were obtained by corresponding methods. The Mori-Tanaka homogenization theory was applied to derive a three-phase equivalent brick matrix using elastic moduli and Poisson’s ratios of quartz, kaolinite, and montmorillonite at the microscale. The Representative Volume Element model with pores was created based on this matrix and pores, integrating Drucker-Prager plastic damage for finite element analysis of ancient brick mechanical behavior. The results indicate that stress–strain curves from the multi-scale micromechanics model resemble macroscopic experimental curves and maintain consistent peak strength. This shows that combining microscopic testing with finite element simulation for analyzing the mechanical properties of ancient bricks is feasible, providing a new non-destructive means of obtaining these properties.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524007056/pdfft?md5=988dd234d5e5dc3b2ee84de90b938475&pid=1-s2.0-S0264127524007056-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Study on the mechanical behavior of millennium-ancient bricks based on microscopic characteristics\",\"authors\":\"Jianwei Yue , Mengen Yue , Yage Zhang , Jiachang Chen , Liangshuai Zhang , Yang Lei , Shaopeng Xu , Haonan Zhang\",\"doi\":\"10.1016/j.matdes.2024.113330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The wide performance variation and inability for destructive testing make accurately determining ancient brick mechanical properties crucial for assessing structural safety in ancient masonry. This paper uses multiscale modeling with microscopic finite element analysis to quantitatively assess ancient brick macroscopic stress–strain relationship and compressive strength based on microstructural characteristics. The basic parameters such as porosity, pore size distribution, mineral composition and volume ratio, and microstructure characteristics of ancient bricks were obtained by corresponding methods. The Mori-Tanaka homogenization theory was applied to derive a three-phase equivalent brick matrix using elastic moduli and Poisson’s ratios of quartz, kaolinite, and montmorillonite at the microscale. The Representative Volume Element model with pores was created based on this matrix and pores, integrating Drucker-Prager plastic damage for finite element analysis of ancient brick mechanical behavior. The results indicate that stress–strain curves from the multi-scale micromechanics model resemble macroscopic experimental curves and maintain consistent peak strength. This shows that combining microscopic testing with finite element simulation for analyzing the mechanical properties of ancient bricks is feasible, providing a new non-destructive means of obtaining these properties.</p></div>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007056/pdfft?md5=988dd234d5e5dc3b2ee84de90b938475&pid=1-s2.0-S0264127524007056-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007056\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007056","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on the mechanical behavior of millennium-ancient bricks based on microscopic characteristics
The wide performance variation and inability for destructive testing make accurately determining ancient brick mechanical properties crucial for assessing structural safety in ancient masonry. This paper uses multiscale modeling with microscopic finite element analysis to quantitatively assess ancient brick macroscopic stress–strain relationship and compressive strength based on microstructural characteristics. The basic parameters such as porosity, pore size distribution, mineral composition and volume ratio, and microstructure characteristics of ancient bricks were obtained by corresponding methods. The Mori-Tanaka homogenization theory was applied to derive a three-phase equivalent brick matrix using elastic moduli and Poisson’s ratios of quartz, kaolinite, and montmorillonite at the microscale. The Representative Volume Element model with pores was created based on this matrix and pores, integrating Drucker-Prager plastic damage for finite element analysis of ancient brick mechanical behavior. The results indicate that stress–strain curves from the multi-scale micromechanics model resemble macroscopic experimental curves and maintain consistent peak strength. This shows that combining microscopic testing with finite element simulation for analyzing the mechanical properties of ancient bricks is feasible, providing a new non-destructive means of obtaining these properties.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.