Lijuan Liu , Pu Li , Feifei Qin , Yuhe Zhang , Zeyu Zhao , Wenjie Liu , Yuehui Sun , Yuncai Wang
{"title":"基于多模混沌激光器的通用毫米波噪声源","authors":"Lijuan Liu , Pu Li , Feifei Qin , Yuhe Zhang , Zeyu Zhao , Wenjie Liu , Yuehui Sun , Yuncai Wang","doi":"10.1016/j.optlastec.2024.111818","DOIUrl":null,"url":null,"abstract":"<div><p>We propose and experimentally demonstrate a universal millimeter-wave noise source based on an optically injected multi-mode chaotic laser. The wideband multi-mode chaotic lights are sliced, amplified and then converted into continuous-wave noise through a photodetector. In our approach, the center frequency and the excess noise ratio of the generated noise signal can be easily adjusted by controlling the sliced spectral numbers and intensities, respectively. Moreover, pulsed noise can also be obtained by introducing an amplitude modulation as a chopper. In our proof-of-concept experiments, we successfully generate 140–220 GHz and 220–390 GHz broadband noise signals with a tunable excess noise ratio up to 52.42 dB. We also validate the tunability of the operation frequency though generating three narrow-band noise signals with center frequencies at 140 GHz, 252 GHz, and 364 GHz, respectively. Furthermore, the generation of pulse noise with durations of 500 ns and 0.5 ns per period are experimentally demonstrated. These results confirm that our proposed universal noise source is a promising candidate for multiple application scenarios.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal millimeter-wave noise source based on a multi-mode chaotic laser\",\"authors\":\"Lijuan Liu , Pu Li , Feifei Qin , Yuhe Zhang , Zeyu Zhao , Wenjie Liu , Yuehui Sun , Yuncai Wang\",\"doi\":\"10.1016/j.optlastec.2024.111818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose and experimentally demonstrate a universal millimeter-wave noise source based on an optically injected multi-mode chaotic laser. The wideband multi-mode chaotic lights are sliced, amplified and then converted into continuous-wave noise through a photodetector. In our approach, the center frequency and the excess noise ratio of the generated noise signal can be easily adjusted by controlling the sliced spectral numbers and intensities, respectively. Moreover, pulsed noise can also be obtained by introducing an amplitude modulation as a chopper. In our proof-of-concept experiments, we successfully generate 140–220 GHz and 220–390 GHz broadband noise signals with a tunable excess noise ratio up to 52.42 dB. We also validate the tunability of the operation frequency though generating three narrow-band noise signals with center frequencies at 140 GHz, 252 GHz, and 364 GHz, respectively. Furthermore, the generation of pulse noise with durations of 500 ns and 0.5 ns per period are experimentally demonstrated. These results confirm that our proposed universal noise source is a promising candidate for multiple application scenarios.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012763\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012763","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Universal millimeter-wave noise source based on a multi-mode chaotic laser
We propose and experimentally demonstrate a universal millimeter-wave noise source based on an optically injected multi-mode chaotic laser. The wideband multi-mode chaotic lights are sliced, amplified and then converted into continuous-wave noise through a photodetector. In our approach, the center frequency and the excess noise ratio of the generated noise signal can be easily adjusted by controlling the sliced spectral numbers and intensities, respectively. Moreover, pulsed noise can also be obtained by introducing an amplitude modulation as a chopper. In our proof-of-concept experiments, we successfully generate 140–220 GHz and 220–390 GHz broadband noise signals with a tunable excess noise ratio up to 52.42 dB. We also validate the tunability of the operation frequency though generating three narrow-band noise signals with center frequencies at 140 GHz, 252 GHz, and 364 GHz, respectively. Furthermore, the generation of pulse noise with durations of 500 ns and 0.5 ns per period are experimentally demonstrated. These results confirm that our proposed universal noise source is a promising candidate for multiple application scenarios.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.