基于机器学习的潜在绝缘气体沸点预测方法

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2024-09-13 DOI:10.1016/j.chemphys.2024.112447
Wei Liu , Junwei Zha , Mengxuan Ling , Dan Li , Kaidong Shen , Longjiu Cheng
{"title":"基于机器学习的潜在绝缘气体沸点预测方法","authors":"Wei Liu ,&nbsp;Junwei Zha ,&nbsp;Mengxuan Ling ,&nbsp;Dan Li ,&nbsp;Kaidong Shen ,&nbsp;Longjiu Cheng","doi":"10.1016/j.chemphys.2024.112447","DOIUrl":null,"url":null,"abstract":"<div><p>The boiling point is a crucial indicator for assessing the suitability of insulating gases. Its theoretical prediction has consistently garnered significant attention from the scientific community. In this study, a boiling point database composed of <em>hexa</em>-element (C, H, O, N, F, S) for potential insulating gases was constructed. The model of Gradient Boosting Regression with RDKit descriptors (RDKit-GBR) achieved superior predictive ability on the test set with a coefficient of determination of 0.97, a mean absolute error of 17.74 °C, and a root-mean-squared error of 27.83 °C. The SHapley Additive exPlanations analysis showed that the “Ipc” feature in RDKit, which represents the spatial relationship and interaction between pairs of atoms within molecules, plays a central role in predicting the boiling points for insulation gases. Furthermore, the applicability of RDKit-GBR method was further validated across several elemental combinations. Eventually, compared with the previously reported models, the <em>hexa</em>-element model achieves excellent accuracy.</p></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"588 ","pages":"Article 112447"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A boiling point prediction method based on machine learning for potential insulating gases\",\"authors\":\"Wei Liu ,&nbsp;Junwei Zha ,&nbsp;Mengxuan Ling ,&nbsp;Dan Li ,&nbsp;Kaidong Shen ,&nbsp;Longjiu Cheng\",\"doi\":\"10.1016/j.chemphys.2024.112447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The boiling point is a crucial indicator for assessing the suitability of insulating gases. Its theoretical prediction has consistently garnered significant attention from the scientific community. In this study, a boiling point database composed of <em>hexa</em>-element (C, H, O, N, F, S) for potential insulating gases was constructed. The model of Gradient Boosting Regression with RDKit descriptors (RDKit-GBR) achieved superior predictive ability on the test set with a coefficient of determination of 0.97, a mean absolute error of 17.74 °C, and a root-mean-squared error of 27.83 °C. The SHapley Additive exPlanations analysis showed that the “Ipc” feature in RDKit, which represents the spatial relationship and interaction between pairs of atoms within molecules, plays a central role in predicting the boiling points for insulation gases. Furthermore, the applicability of RDKit-GBR method was further validated across several elemental combinations. Eventually, compared with the previously reported models, the <em>hexa</em>-element model achieves excellent accuracy.</p></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"588 \",\"pages\":\"Article 112447\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010424002763\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002763","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

沸点是评估绝缘气体适用性的一个重要指标。沸点的理论预测一直备受科学界关注。本研究构建了一个由六元素(C、H、O、N、F、S)组成的潜在绝缘气体沸点数据库。使用 RDKit 描述符的梯度提升回归模型(RDKit-GBR)在测试集上取得了卓越的预测能力,其决定系数为 0.97,平均绝对误差为 17.74 ℃,均方根误差为 27.83 ℃。SHapley Additive exPlanations 分析表明,RDKit 中的 "Ipc "特征表示分子内原子对之间的空间关系和相互作用,在预测绝缘气体的沸点时发挥了核心作用。此外,RDKit-GBR 方法的适用性在几种元素组合中得到了进一步验证。最终,与之前报道的模型相比,六元素模型达到了极高的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A boiling point prediction method based on machine learning for potential insulating gases

The boiling point is a crucial indicator for assessing the suitability of insulating gases. Its theoretical prediction has consistently garnered significant attention from the scientific community. In this study, a boiling point database composed of hexa-element (C, H, O, N, F, S) for potential insulating gases was constructed. The model of Gradient Boosting Regression with RDKit descriptors (RDKit-GBR) achieved superior predictive ability on the test set with a coefficient of determination of 0.97, a mean absolute error of 17.74 °C, and a root-mean-squared error of 27.83 °C. The SHapley Additive exPlanations analysis showed that the “Ipc” feature in RDKit, which represents the spatial relationship and interaction between pairs of atoms within molecules, plays a central role in predicting the boiling points for insulation gases. Furthermore, the applicability of RDKit-GBR method was further validated across several elemental combinations. Eventually, compared with the previously reported models, the hexa-element model achieves excellent accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Structural and spectral characterizations of mono-nitrogen doped C70 fullerene by soft X-ray spectroscopy Construction of dual-output molecular logic circuit based on bovine serum albumin loaded with two fluorescent compounds Investigation on the development of Novel PAM structure as high-performance clay inhibitor in HT/HP conditions by using functional groups Modulated electronic properties of borophene nanoribbons using copper and oxygen atoms Ice-grain impact on a rough amorphous silica surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1