{"title":"基于边缘智能的新型解决方案,利用计算机视觉为视障人士提供更安全的人行道导航","authors":"Rashik Iram Chowdhury, Jareen Anjom, Md. Ishan Arefin Hossain","doi":"10.1016/j.jksuci.2024.102191","DOIUrl":null,"url":null,"abstract":"<div><p>Navigating through a tactile paved footpath surrounded by various sizes of static and dynamic obstacles is one of the biggest impediments visually impaired people face, especially in Dhaka, Bangladesh. This problem is important to address, considering the number of accidents in such densely populated footpaths. We propose a novel deep-edge solution using Computer Vision to make people aware of the obstacles in the vicinity and reduce the necessity of a walking cane. This study introduces a diverse novel tactile footpath dataset of Dhaka covering different city areas. Additionally, existing state-of-the-art deep neural networks for object detection have been fine-tuned and investigated using this dataset. A heuristic-based breadth-first navigation algorithm (HBFN) is developed to provide navigation directions that are safe and obstacle-free, which is then deployed in a smartphone application that automatically captures images of the footpath ahead to provide real-time navigation guidance delivered by speech. The findings from this study demonstrate the effectiveness of the object detection model, YOLOv8s, which outperformed other benchmark models on this dataset, achieving a high mAP of 0.974 and an F1 score of 0.934. The model’s performance is analyzed after quantization, reducing its size by 49.53% while retaining 98.97% of the original mAP.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102191"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002805/pdfft?md5=67af390c0280c8b6ae2c05684fbae69f&pid=1-s2.0-S1319157824002805-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel edge intelligence-based solution for safer footpath navigation of visually impaired using computer vision\",\"authors\":\"Rashik Iram Chowdhury, Jareen Anjom, Md. Ishan Arefin Hossain\",\"doi\":\"10.1016/j.jksuci.2024.102191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Navigating through a tactile paved footpath surrounded by various sizes of static and dynamic obstacles is one of the biggest impediments visually impaired people face, especially in Dhaka, Bangladesh. This problem is important to address, considering the number of accidents in such densely populated footpaths. We propose a novel deep-edge solution using Computer Vision to make people aware of the obstacles in the vicinity and reduce the necessity of a walking cane. This study introduces a diverse novel tactile footpath dataset of Dhaka covering different city areas. Additionally, existing state-of-the-art deep neural networks for object detection have been fine-tuned and investigated using this dataset. A heuristic-based breadth-first navigation algorithm (HBFN) is developed to provide navigation directions that are safe and obstacle-free, which is then deployed in a smartphone application that automatically captures images of the footpath ahead to provide real-time navigation guidance delivered by speech. The findings from this study demonstrate the effectiveness of the object detection model, YOLOv8s, which outperformed other benchmark models on this dataset, achieving a high mAP of 0.974 and an F1 score of 0.934. The model’s performance is analyzed after quantization, reducing its size by 49.53% while retaining 98.97% of the original mAP.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 8\",\"pages\":\"Article 102191\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002805/pdfft?md5=67af390c0280c8b6ae2c05684fbae69f&pid=1-s2.0-S1319157824002805-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002805\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002805","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A novel edge intelligence-based solution for safer footpath navigation of visually impaired using computer vision
Navigating through a tactile paved footpath surrounded by various sizes of static and dynamic obstacles is one of the biggest impediments visually impaired people face, especially in Dhaka, Bangladesh. This problem is important to address, considering the number of accidents in such densely populated footpaths. We propose a novel deep-edge solution using Computer Vision to make people aware of the obstacles in the vicinity and reduce the necessity of a walking cane. This study introduces a diverse novel tactile footpath dataset of Dhaka covering different city areas. Additionally, existing state-of-the-art deep neural networks for object detection have been fine-tuned and investigated using this dataset. A heuristic-based breadth-first navigation algorithm (HBFN) is developed to provide navigation directions that are safe and obstacle-free, which is then deployed in a smartphone application that automatically captures images of the footpath ahead to provide real-time navigation guidance delivered by speech. The findings from this study demonstrate the effectiveness of the object detection model, YOLOv8s, which outperformed other benchmark models on this dataset, achieving a high mAP of 0.974 and an F1 score of 0.934. The model’s performance is analyzed after quantization, reducing its size by 49.53% while retaining 98.97% of the original mAP.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.