Shuangfei Zhu , Chaowen Yang , Junjun Zhao , Shuhai Zhang , Ruijun Gou , Yang Liu , Yahong Chen
{"title":"ReaxFF-lg 模拟揭示了结晶和无定形 TNT 的热解和冲击诱导热解过程","authors":"Shuangfei Zhu , Chaowen Yang , Junjun Zhao , Shuhai Zhang , Ruijun Gou , Yang Liu , Yahong Chen","doi":"10.1016/j.chemphys.2024.112466","DOIUrl":null,"url":null,"abstract":"<div><p>The decomposition mechanisms of crystalline and amorphous TNT were studied through ReaxFF-lg simulations under the heat-loaded and shock-loaded. Their differences were elucidated from the initial decay reactions, activation energy, products and the clusters. Results showed that the heat-induced pyrolysis of two systems differed slight, but the shock-induced pyrolysis differed large. The decomposition reactions of amorphous and crystalline models are similar, but the nitro oxidation of TNT is only found in amorphous. Dimerization and intermolecular H-transfer were found at the constant temperature and MSST simulations, and intermolecular O-transfer were only found at the constant temperature simulations. For MSST simulation, products in crystalline formed later than in amorphous, and the number of clusters in crystalline is much larger than in amorphous, which indicating crystalline TNT would be induced early through shock wave. These findings could help to increase the understanding for the thermolysis behavior and safety of crystalline and amorphous energetic materials.</p></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"588 ","pages":"Article 112466"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat- and shock-induced pyrolysis of crystalline and amorphous TNT revealed by ReaxFF-lg simulations\",\"authors\":\"Shuangfei Zhu , Chaowen Yang , Junjun Zhao , Shuhai Zhang , Ruijun Gou , Yang Liu , Yahong Chen\",\"doi\":\"10.1016/j.chemphys.2024.112466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The decomposition mechanisms of crystalline and amorphous TNT were studied through ReaxFF-lg simulations under the heat-loaded and shock-loaded. Their differences were elucidated from the initial decay reactions, activation energy, products and the clusters. Results showed that the heat-induced pyrolysis of two systems differed slight, but the shock-induced pyrolysis differed large. The decomposition reactions of amorphous and crystalline models are similar, but the nitro oxidation of TNT is only found in amorphous. Dimerization and intermolecular H-transfer were found at the constant temperature and MSST simulations, and intermolecular O-transfer were only found at the constant temperature simulations. For MSST simulation, products in crystalline formed later than in amorphous, and the number of clusters in crystalline is much larger than in amorphous, which indicating crystalline TNT would be induced early through shock wave. These findings could help to increase the understanding for the thermolysis behavior and safety of crystalline and amorphous energetic materials.</p></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"588 \",\"pages\":\"Article 112466\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010424002957\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002957","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
通过 ReaxFF-lg 模拟研究了晶体和无定形 TNT 在热负荷和冲击负荷下的分解机理。从初始衰变反应、活化能、产物和团聚体等方面阐明了它们之间的差异。结果表明,两种体系的热诱导热分解差异较小,但冲击诱导热分解差异较大。无定形模型和晶体模型的分解反应相似,但 TNT 的硝基氧化反应只出现在无定形模型中。在恒温模拟和 MSST 模拟中发现了二聚化和分子间 H 转移,而分子间 O 转移只在恒温模拟中发现。在MSST模拟中,晶体中产物的形成晚于非晶体,且晶体中簇的数量远大于非晶体,这表明晶体TNT通过冲击波诱导的时间较早。这些发现有助于加深对晶体和非晶态高能材料热分解行为和安全性的理解。
Heat- and shock-induced pyrolysis of crystalline and amorphous TNT revealed by ReaxFF-lg simulations
The decomposition mechanisms of crystalline and amorphous TNT were studied through ReaxFF-lg simulations under the heat-loaded and shock-loaded. Their differences were elucidated from the initial decay reactions, activation energy, products and the clusters. Results showed that the heat-induced pyrolysis of two systems differed slight, but the shock-induced pyrolysis differed large. The decomposition reactions of amorphous and crystalline models are similar, but the nitro oxidation of TNT is only found in amorphous. Dimerization and intermolecular H-transfer were found at the constant temperature and MSST simulations, and intermolecular O-transfer were only found at the constant temperature simulations. For MSST simulation, products in crystalline formed later than in amorphous, and the number of clusters in crystalline is much larger than in amorphous, which indicating crystalline TNT would be induced early through shock wave. These findings could help to increase the understanding for the thermolysis behavior and safety of crystalline and amorphous energetic materials.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.