Narjes Benameur, Ameni Sassi, Wael Ouarda, Ramzi Mahmoudi, Younes Arous, Mazin Abed Mohammed, Chokri ben Amar, Salam Labidi, Halima Mahjoubi
{"title":"解密 COVID-19 相关心脏并发症的复杂性:利用先进的深度学习框架提高分类准确性","authors":"Narjes Benameur, Ameni Sassi, Wael Ouarda, Ramzi Mahmoudi, Younes Arous, Mazin Abed Mohammed, Chokri ben Amar, Salam Labidi, Halima Mahjoubi","doi":"10.1002/ima.23189","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The literature has widely described the interaction between cardiac complications and COVID-19. However, the diagnosis of cardiac complications caused by COVID-19 using Computed Tomography (CT) images remains a challenge due to the diverse clinical manifestations. To address this issue, this study proposes a novel configuration of Convolutional Neural Network (CNN) for detecting cardiac complications derived from COVID-19 using CT images. The main contribution of this work lies in the use of CNN techniques in combination with Long Short-Term Memory (LSTM) for cardiac complication detection. To explore two-class classification (COVID-19 without cardiac complications vs. COVID-19 with cardiac complications), 10 650 CT images were collected from COVID-19 patients with and without myocardial infarction, myocarditis, and arrhythmia. The information was annotated by two radiology specialists. A total of 0.926 was found to be the accuracy, 0.84 was the recall, 0.82 was the precision, 0.82 was the <i>F</i><sub>1</sub>-score, and 0.830 was the g-mean of the suggested model. These results show that the suggested approach can identify cardiac problems from COVID-19 in CT scans. Patients with COVID-19 may benefit from the proposed LSTM-CNN architecture's enhanced ability to identify cardiac problems.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Complexities of COVID-19-Related Cardiac Complications: Enhancing Classification Accuracy With an Advanced Deep Learning Framework\",\"authors\":\"Narjes Benameur, Ameni Sassi, Wael Ouarda, Ramzi Mahmoudi, Younes Arous, Mazin Abed Mohammed, Chokri ben Amar, Salam Labidi, Halima Mahjoubi\",\"doi\":\"10.1002/ima.23189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The literature has widely described the interaction between cardiac complications and COVID-19. However, the diagnosis of cardiac complications caused by COVID-19 using Computed Tomography (CT) images remains a challenge due to the diverse clinical manifestations. To address this issue, this study proposes a novel configuration of Convolutional Neural Network (CNN) for detecting cardiac complications derived from COVID-19 using CT images. The main contribution of this work lies in the use of CNN techniques in combination with Long Short-Term Memory (LSTM) for cardiac complication detection. To explore two-class classification (COVID-19 without cardiac complications vs. COVID-19 with cardiac complications), 10 650 CT images were collected from COVID-19 patients with and without myocardial infarction, myocarditis, and arrhythmia. The information was annotated by two radiology specialists. A total of 0.926 was found to be the accuracy, 0.84 was the recall, 0.82 was the precision, 0.82 was the <i>F</i><sub>1</sub>-score, and 0.830 was the g-mean of the suggested model. These results show that the suggested approach can identify cardiac problems from COVID-19 in CT scans. Patients with COVID-19 may benefit from the proposed LSTM-CNN architecture's enhanced ability to identify cardiac problems.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23189\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23189","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deciphering the Complexities of COVID-19-Related Cardiac Complications: Enhancing Classification Accuracy With an Advanced Deep Learning Framework
The literature has widely described the interaction between cardiac complications and COVID-19. However, the diagnosis of cardiac complications caused by COVID-19 using Computed Tomography (CT) images remains a challenge due to the diverse clinical manifestations. To address this issue, this study proposes a novel configuration of Convolutional Neural Network (CNN) for detecting cardiac complications derived from COVID-19 using CT images. The main contribution of this work lies in the use of CNN techniques in combination with Long Short-Term Memory (LSTM) for cardiac complication detection. To explore two-class classification (COVID-19 without cardiac complications vs. COVID-19 with cardiac complications), 10 650 CT images were collected from COVID-19 patients with and without myocardial infarction, myocarditis, and arrhythmia. The information was annotated by two radiology specialists. A total of 0.926 was found to be the accuracy, 0.84 was the recall, 0.82 was the precision, 0.82 was the F1-score, and 0.830 was the g-mean of the suggested model. These results show that the suggested approach can identify cardiac problems from COVID-19 in CT scans. Patients with COVID-19 may benefit from the proposed LSTM-CNN architecture's enhanced ability to identify cardiac problems.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.