人工智能驱动控制,加强管式反应器中基于二氧化碳的废水 pH 值调节

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-09-17 DOI:10.1016/j.compchemeng.2024.108880
Santi Bardeeniz , Chanin Panjapornpon , Wongsakorn Hounkim , Tanawadee Dechakupt , Atthasit Tawai
{"title":"人工智能驱动控制,加强管式反应器中基于二氧化碳的废水 pH 值调节","authors":"Santi Bardeeniz ,&nbsp;Chanin Panjapornpon ,&nbsp;Wongsakorn Hounkim ,&nbsp;Tanawadee Dechakupt ,&nbsp;Atthasit Tawai","doi":"10.1016/j.compchemeng.2024.108880","DOIUrl":null,"url":null,"abstract":"<div><p>Alkaline wastewater treatment using carbon dioxide can reduce chemical costs and provide a safer alternative to traditional methods. However, complex gas-liquid reactions and narrow operating pH ranges present challenges. This research develops an artificial intelligence-driven control system for treating alkaline wastewater using carbon dioxide in a bench-scale tubular reactor. The proposed control system employs an inverse neural network to regulate the carbon dioxide gas based on the desired setpoint, along with a Smith predictor and a linear controller to compensate for natural delays, model mismatches, and pH disturbances. The inverse neural controller was trained using experimental data from a bench-scale reactor pH treatment of synthetic alkaline wastewater and verified on real influent from an electroplating wastewater treatment plant. The results show that the proposed method efficiently enforces the desired reactor outlet pH setpoint with up to 51.36% faster settling time than a proportional-integral controller while improving pH-adjusting efficiency by 72.24%.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108880"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002989/pdfft?md5=5cb2369357521d26493300c0a7ab4b44&pid=1-s2.0-S0098135424002989-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-driven control for enhancing carbon dioxide-based wastewater pH regulation in tubular reactor\",\"authors\":\"Santi Bardeeniz ,&nbsp;Chanin Panjapornpon ,&nbsp;Wongsakorn Hounkim ,&nbsp;Tanawadee Dechakupt ,&nbsp;Atthasit Tawai\",\"doi\":\"10.1016/j.compchemeng.2024.108880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alkaline wastewater treatment using carbon dioxide can reduce chemical costs and provide a safer alternative to traditional methods. However, complex gas-liquid reactions and narrow operating pH ranges present challenges. This research develops an artificial intelligence-driven control system for treating alkaline wastewater using carbon dioxide in a bench-scale tubular reactor. The proposed control system employs an inverse neural network to regulate the carbon dioxide gas based on the desired setpoint, along with a Smith predictor and a linear controller to compensate for natural delays, model mismatches, and pH disturbances. The inverse neural controller was trained using experimental data from a bench-scale reactor pH treatment of synthetic alkaline wastewater and verified on real influent from an electroplating wastewater treatment plant. The results show that the proposed method efficiently enforces the desired reactor outlet pH setpoint with up to 51.36% faster settling time than a proportional-integral controller while improving pH-adjusting efficiency by 72.24%.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108880\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002989/pdfft?md5=5cb2369357521d26493300c0a7ab4b44&pid=1-s2.0-S0098135424002989-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002989\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002989","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

使用二氧化碳进行碱性废水处理可以降低化学成本,并提供比传统方法更安全的替代方法。然而,复杂的气液反应和狭窄的工作 pH 值范围带来了挑战。本研究开发了一种人工智能驱动的控制系统,用于在台式管式反应器中使用二氧化碳处理碱性废水。建议的控制系统采用反向神经网络,根据所需的设定点调节二氧化碳气体,同时采用史密斯预测器和线性控制器来补偿自然延迟、模型失配和 pH 值干扰。利用合成碱性废水的台式反应器 pH 值处理实验数据对逆向神经控制器进行了训练,并在电镀废水处理厂的实际进水中进行了验证。结果表明,与比例积分控制器相比,所提出的方法能有效执行所需的反应器出口 pH 值设定点,沉淀时间最多可缩短 51.36%,同时 pH 值调节效率提高 72.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence-driven control for enhancing carbon dioxide-based wastewater pH regulation in tubular reactor

Alkaline wastewater treatment using carbon dioxide can reduce chemical costs and provide a safer alternative to traditional methods. However, complex gas-liquid reactions and narrow operating pH ranges present challenges. This research develops an artificial intelligence-driven control system for treating alkaline wastewater using carbon dioxide in a bench-scale tubular reactor. The proposed control system employs an inverse neural network to regulate the carbon dioxide gas based on the desired setpoint, along with a Smith predictor and a linear controller to compensate for natural delays, model mismatches, and pH disturbances. The inverse neural controller was trained using experimental data from a bench-scale reactor pH treatment of synthetic alkaline wastewater and verified on real influent from an electroplating wastewater treatment plant. The results show that the proposed method efficiently enforces the desired reactor outlet pH setpoint with up to 51.36% faster settling time than a proportional-integral controller while improving pH-adjusting efficiency by 72.24%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1